maxon motor # maxon motor control ADS_E 50/10 # Order number 168049 # **Operating Instructions** **April 2006 Edition** The ADS_E 50/10 is a powerful servo amplifier for driving permanent magnet DC motors from 80 up to 500 watts. Four modes can be selected by DIP switches on the board: - Speed control using tacho signals - Speed control using encoder signals - IxR compensated speed control - Torque or current control The ADS_E 50/10 is protected against excess current, excess temperature and short circuit on the motor winding. Thanks to the wide input power supply range of 12 - 50 VDC, the ADS_E 50/10 is very versatile and can be used with various power supplies. The Eurocard size allows the unit to be installed in a 19"-subrack or in a plug-in card system. Thanks to the controller circuit design, the ADS E 50/10 is easily and quickly installed. # **Table of Contents** | 2 | |----| | 3 | | 4 | | 5 | | 7 | | 10 | | 12 | | 13 | | 13 | | 14 | | 14 | | 15 | | 15 | | | The latest edition of these operating instructions may be downloaded from the internet as a PDF-file under www.maxonmotor.com, category "Service & Downloads", Order number 168049. # 1 Safety Instructions ## **Skilled Personnel** Installation and starting of the equipment shall only be performed by experienced, skilled personnel. #### **Statutory Regulations** The user must ensure that the servoamplifier and the components belonging to it are assembled and connected according to local statutory regulations. #### **Load Disconnected** For primary operation the motor should be free running, i.e. with the load disconnected. ## **Additional Safety Equipment** An electronic apparatus is not fail-safe in principle. Machines and apparatus must therefore be fitted with independent monitoring and safety equipment. If the equipment breaks down, if it is operated incorrectly, if the control unit breaks down or if the cables break, etc., it must be ensured, that the drive or the complete apparatus is kept in a safe operating mode. #### Repairs Repairs may be made by authorised personnel only or by the manufacturer. It is dangerous for the user to open the unit or make repairs to it. #### Danger Do ensure that during the installation of the ADS_E 50/10 no apparatus is connected to the electrical supply. After switching on, do not touch any live parts. ## **Maximum Supply Voltage** Make sure that the supply voltage is between 12 and 50 VDC. Voltages higher than 53 VDC or of wrong polarity will destroy the unit. ## Short circuit and earth fault The ADS_E 50/10 amplifier is not protected against winding short circuits against ground safety earth or Gnd! #### **Motor choke** The built in motor choke of the ADS_E 50/10 allows operation with almost all maxon DC motors with an output power higher than 80 watts. If necessary the motor continuous current must be slightly reduced. Generally the following applies: $$L_{exterm}\left[mH\right] \ge \frac{V_{CC}\left[V\right]}{0.15\left[\frac{1}{s}\right] \cdot I_{D}\left[mA\right]} - 0.15\left[mH\right] - \frac{L_{Motor}\left[mH\right]}{3}$$ - Supply voltage V_{CC} [V] - Nominal current (Max. continuous output current) ID [mA] - Terminal inductance L_{Motor} [mH] #### Sought value: Additional required external inductance so that the continuous current only reduces by max. 10% as a result of warming. #### **Electrostatic Sensitive Device (ESD)** # 2 Performance Data | 2.1 | Electrical data | | | | |-----|---------------------------|---|--|-----| | | | Supply voltage V _{CC} (Ripple < 5%) | 12 - 50 VI | DC | | | | Max. output voltage | | | | | | Max. output current I _{max} | 20 | A 0 | | | | Continuous output current I _{cont} | 10 |) A | | | | Switching frequency | | | | | | Max. Efficiency | | | | | | Band width current controller | | | | | | Built-in motor chocke | 75 μH / 10 | JA | | 2.2 | Inputs | | | | | | | Set value | 10 +10 V (R _i = 20 k | (Ω) | | | | Enable | +4 +50 VDC (R _i = 15 k | (Ω) | | | | Input voltage DC tacho "Tacho Input"mir | n. 2 VDC, max. 50 VDC (R _i = 14 k | (Ω) | | | | Encoder signals "Channel A, A B, B\" | max. 100 kHz, TTL le | vel | | 2.3 | Outputs | | | | | | | Current monitor "Monitor I", short-circuit protected | 10 +10 VDC (R _O = 100 | Ω) | | | | Speed monitor "Monitor n", short-circuit protected | 10 +10 VDC (R _O = 100 | Ω) | | | | Status reading "READY" Open collector | max. 30 VDC (I _L ≤ 20 m | ηA) | | 2.4 | Voltage outpu | ts | | | | | | Aux. voltage, short-circuit protected +12 VD Encoder supply voltage | The state of s | | | 2.5 | Trim potention | neters | | | | | | IxR compensation Offset | | | | | | n _{max} | | | | | | I _{max}
gain | | | | 2.6 | LED indicator | | | | | | | Bi-colour LED | | | | | | | green = READY, red = ERRO | OR | | 2.7 | Ambient temp | erature- / Humidity range | | | | | | Operating | 10 +45 | _ | | | | Storage | | | | | | noncondensating | 20 80 |) % | | 2.8 | Mechanical da | ta | | | | | | Weight | | | | | | Dimensions | see dimension drawing, chapter | 12 | | 2.9 | Terminal | | | | | ۷.5 | i C i iiiiilai | | | | | | | Connector DIN 41612 | Version H7/F | 24 | # 3 Minimum External Wiring for Different Modes of Operation # 4 Operating Instructions # 4.1 Determine power supply requirements You may make use of any available power supply, as long as it meets the minimal requirements spelled out below. During set up and adjustment phases, we recommend separating the motor mechanically from the machine to prevent damage due to uncontrolled motion. #### Power supply requirements | Output voltage | V _{CC} min. 12 VDC; max. 50 VDC | |----------------|--| | Ripple | < 5 % | | Output current | depending on load, continuous 10 A (short-time 20 A) | The required voltage can be calculated as follows: #### Known values: - ⇒ Operating torque M_B [mNm] - ⇒ Operating speed n_B [rpm] - \Rightarrow Nominal motor voltage U_N [Volt] - \Rightarrow Motor no-load speed at U_N , n_0 [rpm] - \Rightarrow Speed/torque gradient of the motor $\Delta n/\Delta M$ [rpm/mNm] ## Sought values: ⇒ Supply voltage V_{CC} [Volt] ## Solution: $$V_{CC} = \frac{U_N}{n_0} \cdot \left(n_B + \frac{\Delta n}{\Delta M} \cdot M_B \right) \cdot \frac{1}{0.9} + 2 \left[V \right]$$ Choose a power supply capable of supplying this calculated voltage under load. The formula takes into account a max. PWM cycle of 90 % and a 2 volt max. voltage drop. #### Consider: The power supply must be able to buffer the back-fed energy from brake operation e.g. in a condenser. With electronically stabilized power supply units it is to ensure, that the overcurrent protection responds in no operating condition. # 4.2 Function of the potentiometers | ſ | | Detentiometer | | Potentiometer Function | Turn to the | | |-------|-------------|---------------|--|---------------------------------------|---------------------|---------------------| | 1 | O LED | Polei | itiometer | runction | left [←] | right 🔿 | | V V V | P1 | P1 | IxR | IxR compensation | weak compensation | strong compensation | | V V V | ₽ 2 | P2 | Offset | Adjustment n=0 / I=0 at set value 0 V | motor turns
CCW | motor turns
CW | | V V V | ₿ Р3 | P3 | n _{max} | max. speed
at 10 V set value | speed
slower | speed
faster | | A A A | ∰ P4 | P4 | I _{max} | current limit | lower
min. 0.5 A | higher
max. 20 A | | V V V | P5 | P5 | gain | amplification | lower | higher | | A A A | 於 P6 | P6 | For additional possible adjustments refer to <u>chapter 6</u>. In use with the original frontplate, these potentiometers are covered! | | | | | V V V | <u></u> р7 | P7 | | | | | | V V V | ∯P8 | P8 | | | | | | L | ' | ı l | | | | | # 4.3 Adjustment of the Potentiometers # 4.3.1 Pre-adjustment With the pre-adjustment, the potentiometers are set in a preferred position. ADS E units in original packing are already pre-adjusted. | * | LED | Pre-adjustment | | | |----------|-------------|----------------|-------------------|------| | 4 4 4 | ☆ P1 | P1 | IxR | 0 % | | 444 | ₽ 2 | P2 | Offset | 50 % | | 444 | ₽ 3 | Р3 | n _{max} | 50 % | | 4 4 4 | ₩ P4 | P4 | I _{max} | 50 % | | 444 | ☆ P5 | P5 | gain | 10 % | | A. A. A. | № P6 | P6 | n _{gain} | 25 % | | 4.6.4 | ₩ P7 | P7 | l _{gain} | 40 % | | 4.6.4 | ₽ 8 | P8 | I _{cont} | 50 % | | L |] ' | | | | | Adjustment: refer to section 4.3.2 | |---| | Additional possible adjustments: refer to section 6.1/6.2 | # 4.3.2 Adjustment # Encoder mode DC-Tacho mode IxR compensation - Adjust set value to maximum (e.g. 10 V) and turn potentiometer P3 n_{max} so far that the required speed is achieved. - Set potentiometer P4 I_{max} to the limiting value desired. Maximum current in the 0 ... 20 A range can be adjusted in linear fashion with potentiometer P4. **Important:** The limiting value I_{max} should be below the nominal current (max. continuous current) as shown on the motor data sheet and may not exceed 10 A continuously. - Increase potentiometer P5 gain slowly until the amplification is set large enough. Caution: If the motor vibrates or becomes loud, the amplification is adjusted too high. - 4. Adjust set value to 0 V, e.g. by short circuiting the set value input (link pins [b6] and [b8]). Then set the motor speed to 0 rpm with the potentio-meter **P2 Offset**. # In addition, only in the case of IxR compensation: Slowly increase potentiometer P1 IxR until the compensation is set large enough so that in the case of high motor load the motor speed remains the same or decreases only slightly. **Caution:** If the motor vibrates or becomes loud, the amplification is adjusted too high. # **Current controller mode** Set potentiometer P4 I_{max} at the limiting value desired. Maximum current in the 0 ... 20 A range can be adjusted in linear fashion with potentiometer P4. **Important:** The limiting value I_{max} should be below the nominal current (max. continuous current)as shown in the motor data sheet and may not exceed 10 A continuously. Adjust set value to 0 V. Then set the motor current to 0 A with the potentiometer P2 Offset. #### Note: - A set value in the -10 ... +10 V range is equal to a current range of approx. +I_{max} ... -I_{max} - Configured as a current controller, P1, P3 and P5 are not activated. # 5 Functions # 5.1 Inputs # 5.1.1 Set value The set value input is wired as a differential amplifier. | Input voltage range | -10 +10 V | |---------------------|---| | Input circuit | differential | | Input resistance | 20 kΩ (differential) | | Positive set value | (+ set value [b6]) > (- set value [b8])
Negative motor voltage or current
motor shaft turns CCW | | Negative set value | (+ set value [b6]) < (- set value [b8]) Positive motor voltage or current motor shaft turns CW | #### **5.1.2** Enable If a voltage is given at "Enable", the servoamplifier switches the motor voltage to the winding connections. If the "Enable" input is not switched on or is connected to the Gnd, the power stage will be highly resistant and will be disabled. The "Enable" input is short-circuit protected. | F | n | al | h | ما | |---|---|----|---|----| | | ш | a | u | ᆫ | | Minimum input voltage | +4.0 VDC | |-----------------------|---------------------| | Maximum input voltage | +50 VDC | | Input resistance | 15 kΩ | | Switching time | typ 500 μs (by 5 V) | # Disable | Minimum input voltage | 0 VDC | |-----------------------|---------------------| | Maximum input voltage | +2.5 VDC | | Input resistance | 15 kΩ | | Switching time | typ 100 μs (by 0 V) | # 5.1.3 DC Tacho | Minimum input voltage | 2.0 V | |-----------------------|-------| | Maximum input voltage | 50 V | | Input resistance | 14 kΩ | # Speed control range The speed range is set using Potentiometer $P3 n_{max}$ (max. speed at maximum set value) For full speed control with ±10 V, the tacho input voltage range must be at least ±2 V. # Example for DC-Tacho with 0.52 V / 1000 rpm 2.0 V tacho voltage is equivalent to a speed of approx. 3850 rpm. If the full set value range has been used, the lowest adjustable speed with the n_{max} potentiometer is 3850 rpm. Lower speed ranges can be reached through a reduced set value range or by using a DC tacho with a higher output voltage, such as $5\ V\ /\ 1000\ rpm$. | maxon | motor | |----------|--------| | IIIaxoii | HIOLOI | # 4-Q-DC Servoamplifier ADS E 50/10 Operating Instructions #### 5.1.4 Encoder | Encoder supply voltage | +5 VDC max. 80 mA | |---------------------------|-----------------------------------| | Maximum encoder frequency | DIP switch \$5 ON: 10 kHz | | | DIP switch S5 OFF: 100 kHz | | Voltage value | TTL | | | low max. 0.8 V | | | high min. 2.0 V | It is strongly recommended that the encoder be used with a built-in line driver. If the encoder is used **without** a line driver (without EncoderA\ and EncoderB\), speed breakdowns and max. speed limits must be expected because of the slower switching slope. The servoamplifier does not need any home impulse I and I\. # 5.2 Outputs ## 5.2.1 Current monitor "Monitor I" The servoamplifier makes a current actual value available for monitoring purposes. The signal is proportional to the motor current. The "Monitor I" output is short-circuit protected. | Output voltage range | -10 +10 VDC | |--|---| | Output resistance | 100 Ω | | Gradient | approx. 0.4 V/A | | positive voltage on current monitor output | corresponds to a negative motor current | | negative voltage on current monitor output | corresponds to a positive motor current | # 5.2.2 Speed monitor "Monitor n" The speed monitor is primarily intended for the qualitative estimation of the dynamics. The absolute speed is determined by the properties of the speed sensors and by the setting of the n_{max} potentiometer. The output voltage of the speed monitor is proportional to the number of revolutions. The output voltage of the speed monitor is 10 V when the maximum number of revolutions set by the n_{max} potentiometer has been reached. The "Monitor n" output is short-circuit protected. | Output voltage range | | -10 . | -10 +10 VDC | | | |----------------------|-----------------------|---|---|-------|--| | Output resistance | | 100 | 100 Ω | | | | Example: | -10 V
0 V
+10 V | corresponding speed
corresponding speed
corresponding speed | -n _{max}
0 rpm
+n _{max} | (CCW) | | # 5.2.3 Status reading "Ready" The "Ready" signal can be used to report the state of operational readiness or a fault condition on a master control unit. The "Open Collector" output is, in normal cases, i.e. no faults, switched to Gnd. In the case of a fault due to excess temperature or excess current, voltage processing error or too high encoder input frequency, the output transistor is not conducting (high resistance). An external additional voltage is required: | Input voltage range | max. 30 VDC | |---------------------|-------------| | Load current | ≤ 20 mA | ## Note: The fault condition is stored. In order to reset the fault condition, the servoamplifier must be re-released (Enable). If the cause of the fault situation cannot be removed, the output transistor will immediately change to the not conducting state again. # 6 Additional Possible Adjustments # 6.1 Adjustments potentiometer P6 ngain and potentiometer P7 Igain In most applications, regulation setting is completely satisfactory using potentiometers **P1** to **P5**. In special cases the transient response can be optimized by setting the **P6** n_{gain} potentiometer. The **P7** I_{gain} potentiometer can, in addition, be adapted to the dynamics of the current regulator. It is recommend that the success of changes to the settings of **P6** and **P7** be checked by measuring the transient response with an oscilloscope at the "Monitor n" and "Monitor I" outputs. Pre-adjustment **P6** n_{gain} = 25 % and **P7** I_{gain} = 40 %. # 6.2 Adjustments potentiometer P8 I_{cont} and current limit mode DIP switch S6 It is standard that a maximum current limiter is activated (DIP switch **S6** OFF). In this way the motor current is limited to the value set on potentiometer **P4** I_{max} (0.5 ... 20 A). If DIP switch **S6** is turned to ON, a cyclical current limiter is also activated. This current limiter method makes a certain level of motor protection against thermal overload possible. For 0.1 seconds the motor current is limited to the value set on potentiometer $P4 I_{max}$ (0.5 ... 20 A) and then for 0.9 seconds current is limited to the value set on potentiometer $P8 I_{cont}$ (0.5 ... 20 A). After 1 second the cycle will repeat itself. Pre-adjustment P8 I_{cont} = 50 %; DIP switch S6 = OFF # 6.3 Maximal encoder frequency DIP switch S5 DIP switch $\bf S5$ permits selection of the maximum encoder input frequency. A max. encoder frequency of 100 kHz is standard. | DIP switch S5 ON ↑ | | | |--------------------------------|------------------------|--| | Max. Input frequency is 10 kHz | | | | Encoder pulse per turn | maximum
motor speed | | | 16 | 37 500 rpm | | | 32 | 18 750 rpm | | | 64 | 9375 rpm | | | 128 | 4688 rpm | | | 256 | 2344 rpm | | | 500 | 1200 rpm | | | 512 | 1172 rpm | | | 1000 | 600 rpm | | | 1024 | 586 rpm | | | DIP switch S5 OFF ↓ | | | |--|------------|--| | Max. Input frequency is 100 kHz | | | | Encoder pulse per turn maximum motor speed | | | | | | | | | | | | | | | | 128 | 46 875 rpm | | | 256 | 23 438 rpm | | | 500 | 12 000 rpm | | | 512 | 11 719 rpm | | | 1000 | 6000 rpm | | | 1024 | 5859 rpm | | # Note: To achieve good control characteristics, encoders with low impulse counts per turn should be run with the DIP switch **S5** ON \uparrow . # 7 Operating Status Display A bi-colour red/green LED shows the operating mode. # 7.1 No LED #### Reason: - No supply voltage - Fuse fault - · Wrong polarity of supply voltage - Short circuit of the +5 V output # 7.2 LED shines green | Blink pattern (green LED) | Operating Conditions | |---------------------------|---------------------------------| | LED on | Amplifier is activated (Enable) | | 7 | Disable function active | # 7.3 LED shines red According to the blink pattern the following error messages can be identified: | Blink pattern (red LED) | Operating Conditions | |-------------------------|--| | 0 1 | If the power stage temperature exceeds a limit of approx. 90°C, the power stage is switches off (disable status). | | © 1111 | If a motor current of more than approx. +/- 25 A is detected at the current actual value, the power stage will be switched off (disable status). | | 3 | If the internal supply voltage cannot be set-up as expected the power amplifier is switched off (disable status). | | ® | If the input frequency at the encoder input is > 150 kHz, the power amplifier is switched off. | The fault condition is stored. In order to reset the fault condition, the servoamplifier must be re-released (Enable). If the cause of the fault condition cannot be eliminated, the error output will be disabled again immediately. #### Reason: - High ambient temperature (blink pattern ①) - max. continuous current > 10 A (blink pattern ①) - bad convection (blink pattern ①) - Short circuit on the motor winding (blink pattern ②) # 8 Error Handling | Defect | Possible source of defect | Measures | |-------------------------|-------------------------------|--| | Shaft does not rotate | Supply voltage < 12 VDC | Check power plug pin [d22] | | | Enable not activated | Check signal plug pin [b2] | | | Set value is 0 V | Check signal plug pin [b6] and pin [b8] | | | Current limit too low | Check adjustment potentiometer P4 I _{max} | | | Wrong operational mode | Check DIP switch settings | | | Bad contacts | Check wiring | | | Wrong wiring | Check wiring | | Speed is not controlled | Encoder mode: encoder signals | Check encoder signal | | | DC- Tacho mode: tacho signals | Check pin [d6] and [d8] (polarity) | | | IxR mode: compensation wrong | Check adjustment potentiometer P1 IxR | # 9 EMC-compliant installation #### Power supply (+Vcc - Power Gnd) - No shielding normally required. - Star point-shaped wiring if several amplifiers are supplied by the same power supply. #### Motor cable - · Shielded cable highly recommended. - Connect shielding on both sides: ADS_E 50/10 side: Terminal 3 "Ground Safety Earth" and/or bottom of housing. Motor side: Motor housing or with motor housing mechanical design with low resistive connection. Use separate cable. ## **Encoder cable** - Although the ADS_E 50/10 can also be operated without a line driver, using an encoder with a line driver is recommended as this improves interference resistance. - · No shielding normally required. - Use separate cable. # Analogue signals (Set value, Tacho, Monitor) - No shielding normally required. - Use cable shielding with analogue signals with small signal level and electromagnetically harsh environment. - Normally connect shielding on both sides. Place shielding on one side if there are 50/60 Hz interference problems. ## Digital signals (Enable, Ready) · No shielding necessary. See also block diagram in chapter 10. In practical terms, only the complete equipment, comprising all individual components (motor, amplifier, power supply unit, EMC filter, cabling etc.) can undergo an EMC test to ensure interference-free CE-approved operation. # 10 Block Circuit Diagram # 11 Pin Allocation Connector DIN 41612 Version H7/F24 # 12 Dimension Drawing Dimensions in [mm] # 13 Accessories (not part of delivery) # 13.1 Front panel: Order number 168910 Dimensions in [mm] natural-colored anodised on both sides 5 TE, 3 HE # 13.2 Backplane with screw terminals: Order number 166873 | | No. of poles | Pitch | suitable for wire cross section | |---------|--------------|---------|---| | Encoder | 6 | 3.81 mm | 0.14 - 1.5 mm ² (single wire)
0.10 - 1.0 mm ² (multiple-stranded wire) | | Signal | 12 | 3.81 mm | 0.14 - 1.5 mm ² (single wire)
0.10 - 1.0 mm ² (multiple-stranded wire) | | Power | 7 | 5.08 mm | 0.14 - 1.5 mm ² (single wire)
0.14 - 1.5 mm ² (multiple-stranded wire) |