IIIROS

Doosan Robot

M0609 | M0617 | M1013 | M1509

ROS Programming Manual

1.	Doosan Robotics ROS in AWS	.3
2. 3	Setup development environment	.4
3.	Running the application on simulator	.8
4.	Create robot application	19
5.	Create fleet	23
6.	Register a robot to AWS RoboMaker	24
7. 3	Setup the ROS Master PC	28
8.	Build & Bundle robot app	30
9.	Deploy to a robot	31
10.	References	34

Doosan Robotics ROS in AWS 1.

- This document describes how to use the Doosan robotics ROS package with AWS RoboMaker.
- This document only covers the basics of robot simulation, robot app creation, and • deployment of Doosan Robotics ROS packages in an AWS RoboMaker environment. For usage or applications outside this topic, please refer to the AWS Robomaker manual or detailed documentation.

https://aws.amazon.com/robomaker

Try the Doosan Robotics ROS package in your local environment, not in the AWS cloud environment, so you can understand what you see more quickly and clearly. https://github.com/doosan-robotics/doosan-robot

2. Setup development environment

• [2.1] Open AWS Management Console (https://console.aws.amazon.com). For region, please choose US West Oregon this time.)

AWS Services - Resource Groups - 🖈	♪ Support →	
AWS Management Console	US East (N. Virginia) US East (Ohio) US West (N. California) US West (Oregon)	
AWS services	Access resour Asia Pacific (hong Kong) Asia Pacific (Mumbai)	
Find Services You can enter names, keywords or acronyms. Q Example: Relational Database Service, database, RDS	Access tt Asia Pacific (Osaka-Local) AWS Cor Asia Pacific (Seoul) Asia Pacific (Singapore)	
▼ Recently visited services	Explore AWS Asia Pacific (Tokyo) Canada (Central)	
Cloud9 S3	Amazon RDS EU (Frankfurt) Set up, operate, a EU (reland) in the cloud, Lear EU (London)	
▼ All services	EU (Paris) Run Serverless (

[2.2] Select AWS RoboMaker from services and from left side navigation pain, select
 Development ->Development environments. Click [Create environment] button
 on top right of the "Development environment" page.

AWS RoboMaker $\qquad imes$	AWS RoboMaker > Development environments		١
Development Development environments Ropor applications	Development environments (11) C Open environment C Creation Q. Find Environments <th>te environment</th> <th></th>	te environment	
Simulation applications	Name Pre-installed software suite	▼ Id	

 [2.3] Set "Name" of your development environment. Choose ROS Kinetic as the Preinstalled software suite. Choose m4.large for Instance type. For Networking settings, choose default VPC from the list and select one subnet from the list shown after selecting VPC. Press [Create] button on bottom right. Development environment now start coming up. (It takes around 2~3 minutes.)

- If the environment creation fails, clear the creation environment and select another subnet to proceed.

reate AWS RoboMaker development environment		
eate AWS Robolhaker development environment		
General		
Name		
aws test		
- Must be between 1 and 60 characters. Valid characters are a-z, A-Z, 0-9, - (hyphen), and _ (underscore). No spaces.		
Pre-installed software suite Info		
ROS Kinetic	•	
mstance type Info m4.large	▼	
AM role Info		
AWSServiceRoleForAWSCloud9		
Networking		
VPC Info		
vpc-1717a06f (Default)	•	
Subnets Info		
		Г

• [2.4] RoboMaker development environment which is based on Cloud9(AWS's Cloud IDE service) will now be launched.

• **[2.6]** Enter the following command in the terminal window to upload the Doosan ROS package source to the created cloud environment.

git clone -b aws --single-branch https://github.com/doosan-robotics/doosanrobot.git

```
bash - "ip-172-31 × 🔶
    bash - "ip-172-31×
                            Immediate
                                             ×
                                                     Untitled1
                                                                      •
 tatter case the central directory and Zibritle comment with be round on
  the last disk(s) of this archive.
unzip: cannot find zipfile directory in one of doosan-robot-aws.zip or
      doosan-robot-aws.zip.zip, and cannot find doosan-robot-aws.zip.ZIP, period.
kabkyoum.kim@doosan.com:~/environment $ git clone -b aws --single-branch https://github.com/doosan-robotics/doosan-robot.git
Cloning into 'doosan-robot'...
remote: Enumerating objects: 360, done.
remote: Counting objects: 100% (360/360), done.
remote: Compressing objects: 100% (217/217), done
remote: Total 590 (delta 162), reused 239 (delta 117), pack-reused 230
Receiving objects: 100% (590/590), 14.29 MiB | 22.82 MiB/s, done.
Resolving deltas: 100% (216/216), done.
Checking connectivity... done.
```

. . .

• [2.7] Enter following commands to run the setup script

cd doosan-robot chmod +x setup.sh ./setup.sh

• [2.8] Setup script will be started. It will take ~30 min to complete. When completed, terminal will show something like this:

bash - "colcon bi× Immediate (Java × +	ē	×
1.1 python-dateutit-2.8.0 pyt2-2019.2 redis-2.10.0 requests-2.22.0 requests-dauthtio-1.2.	0 ru	-c
$a_{ch} = c_{11} = c_{11} = c_{12} = c_{11} = c$	setu Lurl	li
b3-1.25.3 wcwidth-0.1.7 websocket-client-0.56.0 werkzeug-0.15.5 wheel-0.33.6 zipp-0.5.2		
Creating bundle archive V2		
Archiving complete!		
=>0K		
demo:~/environment/MeiroRunner \$		

The script you just executed does following.

- Update the development environment.
- Prepare the resources.
 - . S3 bucket to store the bundle and the output of simulation jobs.
 - (S3 bucket name : robomaker-ws-us-west-2-[AWS Account Number]-[YYMMDD] -[HHMMSS]
 - e.g.: robomaker-ws-us-west-2-123456789012-190808-135139)
 - . IAM role for running simulation.

- . IAM role for deploy the code to robots.
- . Name of robot and simulation application.
- . Update project setting file roboMakerSettings.json to match with the resources prepared by this setup script.
- . Execute initial build and bundle source code.

3. Running the application on simulator

• [3.1] Load the development environment configuration file to the development environment.

- From menu, choose *Run -> Add or Edit Configurations...*

Supp	ort	RoboMaker	Run	Simulation (Completed)	I	Resources
1	robo	Mak _l × CN	Bu	ild	•	age. × CMakeLi × roboMa
1 2 3 4	{ "r	runConfigura { "id": "cro	La We	unch Simulation orkflow	, , ,	
5 6		"name": "« "type": "s	Ad	d or Edit Configurations		
7		"cfg": {				
8 9		simulat" "maxJo	ion": bDurc	: { ationInSeconds": 180	0,	
10		"failu	reBeł	navior": "Fail",		
11 12		"iamRo "outpu	le": tLoca	"<1AM KOLE ARN>", ation": " <bucket nam<="" td=""><td>e></td><td>11</td></bucket>	e>	11
12		7				

- "RoboMaker Configuration" window will be opened. Click [Switch Config] on bottom left

RoboMaker Configuration (/r	oboMakerSettings.json)		×
COLCON BUILD COLCON BUNDLE SIMULATION WORKFLOW	Create New Config	juration	
	Colcon build	Create a new build configuration (working directory, extra arguments,)	
	Colcon bundle	Create a new bundle configuration (working directory, extra arguments, $\ldots)$	
	Simulation	Create a new simulation job configuration (robot and simulation application details, simulation duratic)	on,
	Workflow	Create a new workflow of previously defined build, bundle and simulation operations	
Switch config Edit JSO	N	Cancel Sav	e

- Open the doosan-robot directory and select the roboMakerSettings.json file we

just edited. Click **[OK]** button, then click [Save] button on bottom right of **"RoboMaker Configuration"** window.

Select you	r JSON configuration file		×
Filename:	roboMakerSettings.json		
	est0807 - /home/ubuntu/environment DoosanRobotics robot_ws simulation_ws roboMakerSettings.json oboMakerLogs README.md oboMakerSettings.json		
Folder:	/DoosanRobotics		
		Ok	Cancel

 [3.2] You will now have menu items for this workshop project. From menu, select *Run -> Build -> doosan robot simulation*. This will build your simulation application.

	RoboMaker	Run	Simulation (Completed)	F	Resources	
ett	i× roboMa ": "arn:aws:	Bu Bu	ild Indle	•	doosan robot robot-app doosan robot simulation) = -
L	{}	W	orkflow	•	Add or Edit Configurations	
	nApp": { "doosan_robo"	Ac	ld or Edit Configurations	tio	n ws/hundle/output tap"	Outline
e	cture": "X86	_64",	Sankobot LCS/S Lmu La	τιο	n_ws/bunale/output.tar ,	D
Bi	undleFile": cture": "X86	"./Doo _64",	osanRobotics/simula	tio	n_ws/bundle/output.tar",	De

Running for building Doosan robot simulation results are as below;

[3.3] From menu, select *Run -> Bundle -> Doosan robot simulation*. This will create **bundle** for the application. **Bundle** is the process to archive a ROS application. RoboMaker launches applications in simulation environment / robot hardware using file crated by **bundle**. Bundled file is downloading to the environment and extracted there for running it on the simulation environment / robot hardware.

Running for bundling Doosan robot simulation results are as below;

🕞 Run 🕚	Colcon Bundle	Command:	source /opt/ros/kinetic/setup.bash && colcon bundle	Runner: Shell command	CWD	ENV
Summary: 6 packa Checking if loca Local dependenci Creating bundle Archiving comple	ges finished [18.7s] l dependencies have cha es not changed, skippir archive V2 te!	anged since ng dependenc	last bundle ies update			
Process exited w Pane is dead	ith code: 0	-				

• [3.4] From menu, select *Run -> Launch Simulation -> doosan-robot*. This will launch the simulation application.

Behind the scene, this operation will copy bundled file to **S3**(cloud file storage) and launch a simulation job. Simulation job then load the file from the S3, extract it and launch the application.

Launching Doosan-robot simulation job results are as below;

 [3.5] Simulation job is now bringing up. From menu, select *Simulation -> View Simulation Job Details*. This will open simulation job detail page.

ort	RoboMaker	Run	Simulation (Running)	Resources
"X& { "aric SET_ UCKE REFJ ": GION	tin: × ws_s 36_64", deepracer_sin valuation.lau bles": { FILE": "deep T": "robomal X": "model-s "hard_track", ": "ap-north	mulati unch", pracer ker-ws store", heast-	sim-mx5jpc33dm0c Stop Restart Restart With New Bu Restart With New Bu Restart With Workflow Applications View Simulation Job Switch Simulation Disconnect	ndles w • Details 5-190711-02

• **[3.6]** After waiting for about 3 minutes, the **status** will change from **'preparing'** to **'Running'** and the status will be as below.

d ám Frystlig2kx54t NEN amærsrobornakerap-n frystlig2kx54t 🗇	ortheast-1:852352399745.sime	Status Punning Last updated dation-job/sim- Wed August 7, 2019	11.38.18 PH	
Simulation tools (()		Select V	tion ¥
Gazebo 📫	rqt tofe		Terminal udo	
GAZEBO	CLEANER			•
Claronne fed				

- **Gazebo** is a simulator simulating ROS applications. By clicking **Gazebo** icon, you can interact with the window of Gazebo simulation.

- Model of the robot is loaded and simulation is launched.

Note:

simulation_ws/dsr_launcher /launch/aws_bringup_simulation.launch.

This file is use to launch simulation application. It's specified in

roboMakerSettings.json file as follow.

"simulationApp": {

"name": "doosan_robot_sumulation_annakie",

"sourceBundleFile": "./doosan-robot/simulation_ws/bundle/output.tar",

"architecture": "X86_64",

"launchConfig": {

"packageName": "dsr_launcher",


```
"launchFile": "aws_bringup_simulation.launch",
  "environmentVariables": {}
  },
  "simulationSoftwareSuite": {
  "name": "Gazebo",
  "version": "7"
  },
  "renderingEngine": {
  "name": "OGRE",
  "version": "1.x"
 },
  "robotSoftwareSuite": {
  "name": "ROS",
  "version": "Kinetic"
 }
}
. . .
```

- It's ready, you can try ROS application controls doosan robots.

[3.7] Running the example programs Click the terminal icon to launch a terminal window.

Simulation tools (4)			Select V Action V
Gazebo Info	rqt Info	rviz Infe	Terminal Info
Connecteo	Disconnected	Disconnected	(Disconnected)

- type following command.

rosrun dsr_example_py single_robot_simple.py

	Gzclient - sim-5rgbz1chmcl6		• • •	Xfce4-terminal - sim-5rgbz1chmcl6	
ap-northeast-1.console.aws.amazor	.com/robomaker/viewer?region=ap-northeast-1	#sim-5rgbz 📋	ap-northeast-1.console.aws.ama	azon.com/robomaker/viewer?region=ap-northea	st-1#sim-5rgbz 📋
AWS RoboMaker	sim-5rgbz1chmcl6	Action 🔻	AWS RoboMaker	sim-5rgbz1chmcl6	Action 🔻
<u>File Edit Camera View Window H</u> elp			<u>F</u> ile <u>E</u> dit ⊻iew <u>T</u> erminal T <u>a</u> bs <u>B</u>	Help	
World Insert Layers			actual_jts 0.003	: -0.017 -23.128 -23.136 2.6	52 -0.740 -
– GUI – Scene			actual_ejt 0.002	: 0.013 -0.921 -0.925 0.0	/9 -0.027 -
 Spherical Coordinates Physics Models 			actual_ett 0.000	: 0.000 0.000 0.000 0.0	0.000
▶ Lights			sync_time actual_bk	: 1565610769.421 : 0 0 0 0 0 0	
Property Value			actual_bt actual_mc 0.000	: 0.000 0.000 0.000 0.0	0.000
			actual_mt 0.000	: 0.000 0.000 0.000 0.00	0.000
			<pre>ctrlbox_digital_input ctrlbox_digital_output flapsc_digital_input</pre>	: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
			flange_digital_output	: 0 0 0 0 0 0 0	
			access_control	: 2 : 0	
			tp_initialized mastering need	: 1 : 0	
	Real Time Factor: 1.00 Sim Time	e: 00 00:11:14.0	drl_stopped disconnected	: 0 : 0	
					*

- In the terminal window, press Ctl + c to stop single_robot_simle.py and

enter the following command:

rosrun dsr_example_py dance_m1013.py

- You can launch multiple robots by changing simulation configuration.

Change aws_bringup_simulation.launch as follow,

(simulation_ws/src/dsr_launcher/launch/aws_bringup_simulation.launch)

```
<?xml version="1.0"?>
<launch>
  <!-- node name="drcf" pkg="common" type="run_drcf.sh" output="screen"
required="true"/-->
  </include>
  <!-- Start Gazebo with an empty world. -->
 <!--include file="$(find dsr_launcher)/launch/single_robot_gazebo.launch"-->
  <include file="$(find dsr_launcher)/launch/multi_robot_gazebo.launch">
    <arg name="mode"
                          value="virtual"/>
    <arg name="model" value="m1013"/>
    <arg name="color" value="white"/>
    <arg name="gripper" value="none"/>
    <arg name="mobile" value="none"/>
  </include>
</launch>
```

- do build and bundle simulation again.

Run -> Build -> doosan robot simulation. Run -> Bundle -> doosan robot simulation.

- By launching simulation, you will now see two robots in Gazebo.

Run -> Launch Simulation-> doosan-robot. Simulation -> View Simulation Job Details.

- Click Terminal icon to launch terminal window and type following command.

rosrun dsr_example_py multi_robot.py

[3.8] To finish the simulation, go back to the simulation job detail page and press
 [Actions] -> [Cancel]

	AWS RoboMaker	×	AWS RoboMaker $ ightarrow$ Simulation jobs $ ightarrow$ sim-qly9vz6dtrcd					١
•	Development		sim-qly9vz6dtrcd		Actio	ons 🔻	ļ	
	Robot applications Simulation applications		Details		Canc	el e		
•	Simulations Simulation jobs		ld sim-qly9vz6dtrcd ARN	Status Con Running				
•	Fleet management Robots Fleets		arr:aws:robomaker:us-west-2:852352399745:simulation- job/sim-qly9vz6dtrcd	Thu August 8, 2019 12:01:19 PM				
	Deployments							

4. Create robot application

AWS RoboMaker maintains ROS applications as two types. **"Robot Application"** and **"Simulation Application"**. "Robot Application" is an application which can launch both simulation and real robot. On the other hand, ROS application maintained as **"Simulation Application"** can only be launched on simulation environment.

	In Simulation Job	Deploy to robot	Main purpose
Simulation Application	Mandatory	N/A	 Launch simulation environment Launch simulation robot
Robot Application	Optional (Simulation can be launched without robot application)	Yes	- Control robot - ROS node which interact with HW

We've been only worked with **Simulation application** so far. Let's look at **Robot application**. Reorganized the Doosan ROS package source to make it more suitable for AWS RoboMaker integration. While this restructuring, it's already constructed by with Robot application and Simulation application.

Following is the reorganized default file structure:

```
    doosan-robot
    robot_ws --- Robot application
    + src -- source directory for robot app. ROS packages related to the application stays
    + simulation_ws --- Robot application
    + src -- source directory for simulation app. ROS packages related to the application stays
    roboMakerSettings.json --- setting file for this project.
```

Doosan ROS packages require minor modifications to be used in AWS RoboMaker. This modified part is annotated **"for aws robomaker"**, You can find the modified part by searching for **"for aws robomaker"**. To understand why this change is necessary, the following link may be helpful.

https://aws.amazon.com/jp/blogs/opensource/building-bundling-ros-app-aws-robomaker/)

Doosan Robotics

Package	SIMULATION	ROBOT	Note
common	~	~	
doosan_robot	~	v	
dsr_control	~	~	
dsr_description	 ✓ 	~	
dsr_example	 ✓ 	~	
dsr_gazebo	~		
dsr_launcher	 ✓ 	~	
dsr_msgs	v	v	
moveit_config_m0609	~	v	
moveit_config_m0617	v	v	
moveit_config_m1013	~	✓ v	
moveit_config_m1509	~	~	

Simulation job has already configured but it's not included in the Robot Application, let's include it in Robot Application now.

- [4.1] Open roboMakerSettings.json file. Edit the file to include robot application to a simulation job.
 - To do so, add item below between "simulation" and "simulationApp"

- Following is the item to add.

```
"robotApp": {
  "name": " <robot app name>",
  "s3Bucket": " <bucket name>",
  "sourceBundleFile": "./doosan-robot/robot_ws/bundle/output.tar",
  "architecture": "X86_64",
  "robotSoftwareSuite": {
    "version": "Kinetic",
    "name": "ROS"
  },
  "launchConfig": {
    "packageName": "dsr_launcher",
    "launchFile": "aws_bringup_robot.launch"
  }
},
```


After adding the items, please modify following part:

-For <robot app name>, replace it to robot_app_name in doosan-robot/ws_settings.yaml
-For <bucket name>, replace it to bucket_name in doosan-robot/ws_settings.yaml
-Press [Ctrl] + s to save changes.

(Note: ws_settings.yaml file records the resources created by setup.sh setup script)

- [4.2] From menu select *Run -> Build -> doosan robot robot-app* to build robot application and *Run -> Bundle -> doosan robot robot-app* to bundle the robot application.
- [4.3] Launch simulation job again by selecting *Run -> Launch Simulation -> doosan-robot* from the menu.
- [4.4] This time, both robot application and simulation application are created and executed on simulator. Robot application launches single_robot_simple.py (through aws_bringup_robot.launch in dsr_launcher package), so it when simulation launched, the robot starts to move.

Create fleet 5.

Fleet Management is the feature to manage robots. By using fleet management, you can install robot applications to robots remotely.

To understand how to use fleet management, we first create **fleet**, then register a **robot** and add the robot to the fleet. A fleet is kind of a group to maintain the robot application. You deploy robot application to a **fleet** and all robots belong to the **fleet** download automatically the application and install in to itself.

- [5.1] Open AWS RoboMaker (https://console.aws.amazon.com/robomaker) •
- [5.2] From navigation pain on left, select Fleets in Fleet Management. Fleets list will • be displayed. Select [Create fleet] button on top right.

AWS RoboMaker ×	AWS RoboMaker > Fleets	Q
Development Development environments Robot applications Simulation applications	What is a fleet? A fleet is a group of robots. You can f deployment job in RoboMaker Fleet I can only belong to one fleet.	freely register or deregister existing robots to a fleet. A Management is defined for a particular fleet and each robot
▼ Simulations Simulation jobs	Fleets (0)	C Delete Create fleet
Fleet management Robots	Name V Status V	Latest deployment time 🗢 Latest Deployment ID
Fleets Deployments		Empty fleets You don't have any fleets.

[5.3] Create fleet window will be displayed. Put fleet name in the name field and • click [Create] button.

Name		
workshop-fleet01		
Huse between 1 and 200 characters. Yold	endiacters are a -z; // z; o -s; - (itypiten); and _ (under	storer tro spaces.
Tags - optional Info		
Key	Value - optional	
	Ellipsi de la seconda da seconda d	Flow one flow

6. Register a robot to AWS RoboMaker

Next, let's register a robot to fleet management. AWS RoboMaker then be able to have control to the robot.

• **[6.1]** From navigation pain of left, select **Robots** in **Fleet management**. Robot list will be displayed. Select **[Create robot]** button on top right.

AWS RoboMaker $\qquad imes$	AWS RoboMaker > Robots					
Development Development environments Robot applications	Robots (0) Q. Find rabots	C Delete	Create robot			
Simulation applications	Name 🗢 Status 🗢	Architecture V Flo	eet name ⊽ Create			
Simulations Simulation Jobs		Empty robots You don't have any rol	pots.			
Fleet management Robots Fleets		Create robot]			
Deployments						

• [6.2] Create robot window will be displayed. Set input fields accordingly.

- **Name**: name of the robot. Some arbitrary name you easy to recognize which one is which.

- **Architecture**: CPU architecture which the robot application will run. Choose X86_64 this time.

- AWS Greengrass group: Choose [Create new]

- **AWS Greengrass prefix**: Name of the robot will automatically be applied. Just accept it this time.

- IAM Role: Find value of iam_role_for_deployment in doosanrobot/ws_settings.yaml file.

The setting script created a role for you.

(This IAM role is used to define the access permission of AWS resources from

the robot. If you want to create a role manually, please refer:

https://docs.aws.amazon.com/robomaker/latest/dg/create-robot.html#createrobot-role)

General	
Name	
dr001	
Must be between 1 and	5 characters. Valid characters are a-z, A-Z, 0-9, - (hyphen), and _ (underscore). No spaces.
Architecture Info	
X86 64	
AWS Greengras	▼ group details
AWS Greengras	group details
AWS Greengras AWS Greengrass gro Create new	group details
AWS Greengrass AWS Greengrass gro Create new AWS Greengrass pref	group details
AWS Greengrass AWS Greengrass gro Create new AWS Greengrass pret dr001	group details
AWS Greengrass grou Create new AWS Greengrass pref dr001 Must be between 1 and	group details Info S characters.

- [6.3] Click [Create] button on bottom right, "Download your Core device" window will be displayed.

- **[6.4]** From "Download your Core device", you download files need to be placed to the ROS Master PC to control the robot. First, click **[Download]** button next to **Download and store your Core's security resources**. This download security key files and the settings. Note that you only can download the private key from here and you won't be able to come back to this page afterword. So, please be sure that you download the file right and store it in safe location. This saved file will be used in **Chapter 7. Setup the ROS Master PC.**

 - [6.5] From Download the current AWS Greengrass Core software, you can download AWS IoT Greengrass software. You have to install it into your ROS Master PC to control the robot. The instruction how to setup the Greengrass into device is described chapter 7. Setup the ROS Master PC.

- Press [View robot] button on bottom right.

- "Details" page will be displayed. You will find [Register] button on top left. This assist you to register the robot to a fleet. Let's click the button and register the robot to the **fleet** we just created.

- **"Select fleet to register robot to"** window will be displayed. Select the radio button next to the fleet you just created and click **[Register robot]** button.

Flee	ets (1)					C
Q	Find fleets				<	1 > 💿
	Name \bigtriangledown	Status	∇	Latest deployment time	▽	Latest Deployn
•	workshop	-		-		-
				Cancel		Register robot

- The robot is now belonging to the fleet you just created. Click the link under the Fleet name of Details page, it will navigate you to the fleet page. Fleet page now show number of total robots as 1.

Fleet status		
1 Total robots	Robots in sync	

Now, setup for AWS RoboMaker side for deployment is ready. Let's then setup the robot (DRCF server)

7. Setup the ROS Master PC

Let's set up a ROS Master PC to control the robot so we can connect to AWS RoboMaker. After completing these steps, your ROS Master PC connects to AWS RoboMaker. Greengrass must be installed on the ROS Master PC. Please refer to the link below for details.

https://docs.aws.amazon.com/greengrass/latest/developerguide/setup-filter.other.html

The following should be done on the ROS Master PC.

• [7.1] Setup to install AWS IoT Greengrass

- Execute following to create user named ggc_user and group named ggc_group

```
sudo adduser --system ggc_user
sudo addgroup --system ggc group
```

- Execute Following Check if the Linux PC meets the software requirement for installing AWS IoT Greengrass.

```
cd /
```

mkdir greengrass-dependency-checker-GGCv1.9.x

cd greengrass-dependency-checker-GGCv1.9.x

wget https://github.com/aws-samples/aws-greengrass-

samples/raw/master/greengrass-dependency-checker-GGCv1.9.x.zip

unzip greengrass-dependency-checker-GGCv1.9.x.zip

cd greengrass-dependency-checker-GGCv1.9.x

sudo ./check_ggc_dependencies | more

- If you see any error, install the required software to correct the error.

Install the software required before installing Greengrass.

- As of Ubuntu 16.04 you will need python upgrade, nodejs, and java8 installation.

After installing the program, be sure to symbolically link the executables to the names that Greengrass requires.

 [7.2] Download greengrass-linux-x86-64-1.9.2.tar.gz https://dlonfpft10uf5o.cloudfront.net/greengrasscore/downloads/1.9.2/greengrass-linux-x86-64-1.9.2.tar.gz
 - and extract the file to root

sudo tar -xzvf greengrass-linux-x86-64-1.9.2.tar.gz -C /

• [7.3] Execute following to place root CA.

cd /greengrass/certs/ sudo wget -O root.ca.pem ttps://www.amazontrust.com/repository/AmazonRootCA1.pem

- [7.4] Copy the security resource file (<robot name>-setup.zip) downloaded from Chapter 6. Register a robot to AWS RoboMaker to your ROS master PC.
- **[7.5]** On the ROS Master PC, execute following command to extract the file. You may be asked if you should overwrite existing files with new one. Answer "A" to overwrite all.

sudo unzip <robotname>-setup.zip -d /greengrass

(Please replace <robotname>-setup.zip to the actual file name you've copied.)

• **[7.6]** Execute following command on the robot (ROS Master PC). When succeeded, message "Greengrass successfully started" will be shown.

sudo /greengrass/ggc/core/greengrassd start

Now robot is ready. Let's deploy.

8. Build & Bundle robot app

If you don't make any change to the source code after section 4 completed, you don't need to do this section. If you make any change to source code and want to deploy it before testing it on simulation, you need step here.

• [8.1] Do build and bundle.

- From development environment menu, select *Run -> Build -> doosan robot robot-app* and *Run -> Bundle -> doosan robot robot-app*. This will compile and bundle the robot application.

• [8.2] Upload latest bundle to S3.

- This operation can be done automatically or manually. Recommend how to do it automatically.

- [How to do it automatically]

Run the simulation *Run-> Launch Simulation-> doosan-robot* and the bundle will be uploaded to S3 automatically.

- [How to do it manually]

In a terminal in the AWS RoboMaker development environment, run the following command:

bucket= <buckt_name>

aws s3 cp ~/environment/doosan-robot/robot_ws/bundle/output.tar s3://\${bucket}/robot_ws/bundle/output.tar

Please replace *<bucket_name>* to the bucket_name in doosanrobot/ws_settings.yaml

9. Deploy to a robot

 [9.1] Open AWS RoboMaker from AWS Management Console. From navigation pain on left, select **Deployments** in **Fleet management**. Click [Create deployment] button on top right.

• [9.2] Create deployment window will be displayed.

- Fleet: Choose the fleet you just created.

- **Robot application:** Choose the application you created. The name is auto generated and registered when you launched a simulation.

You can find the robot application name from the value of **robot_app_name** in **doosan-robot/ws_settings.yaml file.**

- Robot application version: Choose Create new to create a new version.

eployment details				
leet				
Workshop1			•	C
obot application				
doosan_robot_robotapp_demo)		•	C
obot application version Info version is a numbered "snapshot" of	f your robot application. It canno	t be changed. A numbered vers	ion is required	for deployments.
1			•	C

• [9.3] In Deployment launch configuration, set as follow:

- Package name: dsr_launcher

- Launch file: aws_bringup_robot.launch

- **Prelaunch file:** optional. By setting here, you can run a script file before ROS application is coming up.

- **Postlaunch file:** optional. By setting here, you can run a script just after ROS application is coming up.

- **Environment variables:** Optional. You can define environment variables here. The environment variables are given to the launched ROS application.

Deployment launch configuration
Package name Info
dsr_launcher
Must be between 1 and 1024 characters. Valid characters are a-z, A-Z, 0-9, - (hyphen), _ (underscore), and . (period). No spaces.
Launch file Info
aws_bringup_robot.launch
Must be between 1 and 1024 characters. Valid characters are a-z, A-Z, 0-9, - (hyphen), _ (underscore), and . (period). No spaces.
Prelaunch file - optional Info
Prelaunch file name
Postlaunch file - optional Info
Postlaunch file name
Environment variables - optional Info

• [9.4] Click [Create] button on bottom right. Deployment is now starting.

Deployment status							
Pending	1 In progre	ess Succeeded	Failed				
Robots status (1 Q. Find Robots)						
Robot name	⊽ Sta	atus Deploving (Downloading and extra	acting 11% complete 1453 seconds remaini	ina)			

- When everything goes right, the count of Succeeded will be 1 and the robot will start moving.

• Note:

- First deployment would take time. It downloads all bundle from the beginning. If you made small change and deploy the change, the deployment time will be shorten. This is because the fleet management would only download the changed part.

- If you want to deploy again with the same settings, you can choose **[Action]** -> **[Close]** from existing deploy, you will then not need to setup the deployment configuration part once again.

10. References

Links:

- Working with Robot Applications

https://docs.aws.amazon.com/robomaker/latest/dg/managing-robotapplications.html

- Working with Simulation Applications

https://docs.aws.amazon.com/robomaker/latest/dg/managing-simulationapplications.html

- Fleet management

https://docs.aws.amazon.com/robomaker/latest/dg/fleets.html

Doosan Robotics

www.doosanrobotics.com