
Collision
Avoidance

under bounded

Localization
Uncertainty

daniel claes

Master Thesis

Collision Avoidance under bounded

Localization Uncertainty

Daniel Claes

Master Thesis DKE 12-26

Thesis submitted in partial fulfillment
of the requirements for the degree of Master of Science

of Artificial Intelligence at the Department of Knowledge
Engineering of the Maastricht University

Thesis Committee:

Karl Tuyls, Gerhard Weiß and Daniel Hennes
Department of Knowledge Engineering, Maastricht University

Philipp Robbel
Massachusetts Institute of Technology

Maastricht University
Faculty of Humanities and Sciences

Department of Knowledge Engineering
Master Artificial Intelligence

August 17, 2012

Abstract

We present a multi-mobile robot collision avoidance system based on the velocity
obstacle paradigm. In contrast to previous approaches, we alleviate the strong
requirement for perfect sensing (i.e. global positioning) using Adaptive Monte-
Carlo Localization on a per-agent level. While such methods as ClearPath
and Optimal Reciprocal Collision Avoidance (ORCA) guarantee local collision-
free motion for a large number of robots, given perfect knowledge of positions
and speeds, a realistic implementation requires further extensions to deal with
inaccurate localization and message passing delays.

The proposed system bounds the error introduced by localization and com-
bines the computation for collision-free motion with localization uncertainty.
Current positions and velocities of surrounding robots are translated to an effi-
cient geometric representation to determine safe motions.

In a first approach, the robots and localization uncertainty are approximated
by circumscribed radii. This method is further refined using a close convex hull
approximation to minimize the overestimation in the footprint and localization
uncertainty.

Additionally, methods to deal with static obstacles for the presented ap-
proaches are explained, so that a fully distributed local multi-robot navigation
solution is provided. Results show that our approach allows for safe navigation
even in densely packed and complex environments including static and dynamic
obstacles.

Acknowledgments

Even though this section is quite early in the thesis, it was the last one to write.
However, it is also one of the most enjoyable section, since it reminds me of the
good time I had during my study and the nice people around me. In the last
two years many people did a good job in keeping me sane and motivated and I
would like to dedicate this section to those that deserve some special attention.

First of all, I would like to thank my supervisors Karl Tuyls and Daniel
Hennes. Karl, you already supervised me during my bachelor thesis and both
of you supervised me during other projects in my master. Thanks to you, I
could avoid the normal project and already work in the swarmlab during my
time as master student. I would also like to thank you for your guidance and
supervision.

With you Daniel, I went to my first conference, the IROS 2011 in San Fran-
cisco and we wrote my first publications together, and we even won the best
demonstration award at AAMAS 2012. Besides all of the study, we had a good
time at parties, the road trip to spain and other events. So thank you very
much for all of this.

I also owe it to my supervisors, Karl and Daniel, that I was given the oppor-
tunity to spend an awesome semester abroad at Willow Garage in California.
My special thanks to Wim, Troy, Ken and Morten, who made my time at Wil-
low unforgettable. Additionally, I should not forget PR-J, PR-M and the four
turtlebots that tried to avoid collisions for me - sometimes successfully, but most
of the time not.

I have always felt welcome in the swarmlab and special thanks to all members
of the swarmlab for the nice time and atmosphere in the lab. The time is not
always spent effectively in the (s)warmlab, but it is always good to be there to
take part in the discussions. We had an awesome time at AAMAS 2012 and I
hope some more conferences will follow. I am very grateful for Gerhard Weiß
and Karl Tuyls to arrange a position for me at the swarmlab so that I can stay
here as a PhD candidate.

Many thanks go to Leoni, Bijan and Jörn for proof-reading my thesis and
commenting on my sometimes awkward grammar and spelling errors and to
Michael to help me with the presentation of the results.

I would also like to express my thanks for my fellow students and house
mates. Joscha, we spent already half a year abroad together in Singapore and
did various projects together. I could always count on your help to complete

the work, even if that included various night shifts.
Fabian, we lived together for the longest time during my study. It was always

good to talk to you and the nights you went to party with us were unforgettable.
Franz, Henning, Andreas and Max, you are also part of the group that

“survived” the bachelor and continued in the master with me and our learning
sessions in the last week before the exams. Without you guys I would have
prepared even less for the exams.

I would like to thank the people of the MaasSAC, which is my one of my
biggest distractions during studies. It is always nice to come to the climbing
gym. Without you, I would not be able to climb mountains, hike glaciers and
reach summits.

Not the last but neither least, I would like to thank my family. Without the
help and support of my parents and my brother, I would not have been able to
do any of this. It is always nice to come home and feel welcomed as I do.

Volgens de traditie is de laatste bedankte ook de belangrijkste. Renée, zon-
der jouw steun, hulp en liefde zou ik de laatste tijd niet gehaald hebben. Je
moest af en toe een beetje afzien, bij voorbeeld, als ik naar de VS ging, of in
de laatste maand van het schrijven van deze scriptie. Toen heb ik niet meer
veel anders gedaan als in de studeer kamer te zitten en te schrijven. Maar ook
in deze tijd heb je je om mij gezorgd, me eten gebracht en geholpen, onder
anderen door de boxen te regelen van je medewerker Karin. Wij konden niet
alle “collisies uitwijken”, maar gelukkig hebben we geen schade ervan genomen
en ook heel vele leuke ervaringen samen, zoals de zomervakantie in de Alpen,
Mexico en Noorwegen. Hopelijk komen er nog een aantal meer!

Thank you all!

Contents

Contents i

List of figures iv

List of tables vii

1 Introduction 1
1.1 From local collision avoidance to multi-robot collision avoidance . 1
1.2 Problem definition . 2
1.3 Contributions . 3
1.4 Related work . 4
1.5 Outline . 5

2 Background 7
2.1 Introduction . 7
2.2 Velocity Obstacles (VO) . 8

2.2.1 Reciprocal velocity obstacles (RVO) 9
2.2.2 Hybrid reciprocal velocity obstacles (HRVO) 10
2.2.3 Truncation . 10

2.3 Selection of collision-free velocity 11
2.3.1 Optimal Reciprocal Collision Avoidance (ORCA) 11
2.3.2 ClearPath . 13
2.3.3 Sampling based . 14

2.4 Kinematic and dynamic constraints 14
2.5 Adaptive Monte-Carlo Localization 16

2.5.1 Prediction phase . 17
2.5.2 Update phase . 17
2.5.3 Kidnapped robot and false localization 18

2.6 Robot Operating System (ROS) 19
2.7 Summary . 20

3 Collision avoidance with localization uncertainty (CALU) 21
3.1 Introduction . 21
3.2 Approach . 22

3.2.1 Platform . 23

i

3.2.2 Sensor processing and localization 23
3.2.3 Inter-robot communication 23
3.2.4 Collision avoidance . 23

3.3 Localization Uncertainty . 23
3.4 Summary . 25

4 Convex outline collision avoidance under localization uncer-
tainty (COCALU) 27
4.1 Introduction . 27

4.1.1 Problematic situations with CALU 28
4.2 Approach . 28
4.3 VOs with convex shapes . 29
4.4 Convex hull peeling with an error bound for convex-outline robots 30
4.5 ORCA with convex shapes . 32
4.6 Complexity . 34
4.7 Summary . 34

5 Static Obstacles 35
5.1 Introduction . 35
5.2 Obstacle detection with a laser range finder 35

5.2.1 Line detection . 37
5.2.2 Dealing with a 3D sensor source 38

5.3 Static Obstacles with VO-based methods 38
5.4 Static Obstacles with ORCA . 39

5.4.1 Obstacles as points . 39
5.4.2 Obstacle as line-segments 40

5.5 Summary . 41

6 Evaluation of the methods 43
6.1 Introduction . 43

6.1.1 System . 44
6.1.2 Common scenario . 44
6.1.3 Performance measures . 45

6.2 Parameter tuning . 46
6.2.1 Choosing the right error-bound for the localization uncer-

tainty . 46
6.2.2 Comparing the different VO types 50

6.3 Comparison of different numbers and types of robots 52
6.3.1 Results and discussion for round differential drive robots . 53
6.3.2 Results and discussion for convex holonomic robots 57
6.3.3 Real world results . 61

6.4 Moving and static obstacles in real world scenarios 66
6.4.1 Results and discussion . 67

6.5 Summary . 70

7 Conclusions 71

ii

Bibliography 73

Appendix 77

A Results for VO selection with ground truth 77
A.1 Simulation runs with round robots 78
A.2 Simulation runs with rectangular robots 79

B Real world results 80
B.1 Round turtlebots . 80
B.2 Quadratic shaped turtlebots . 80

iii

List of figures

2.1 A workspace configuration and translating it to a velocity obstacle. 8

2.2 Translating V OA|B to create the RV OA|B and HRV OA|B 10

2.3 Truncation . 11

2.4 ORCA . 12

2.5 ClearPath . 14

2.6 Non-holonomic tracking error . 15

2.7 Typical particle filter situations 18

2.8 Using the ROS visualization tool rxgraph. 19

3.1 CALU with four robots . 22

4.1 The corridor problem . 28

4.2 VO for convex outline robots. 29

4.3 Convex hull peeling and Minkowski sum 30

4.4 ORCA with convex outline robots 32

4.5 Corridor problem solved . 34

5.1 Obstacle detection with a LIDAR 36

5.2 VO obstacles . 39

5.3 ORCA obstacles . 40

6.1 Static map and common scenario 45

6.2 Comparing the effect on the area of particles covered for different
error-bounds (ε) in CALU and COCALU 47

6.3 Comparing the localization error in simulation with the average
distance of the particle cloud covered for CALU and COCALU . 48

6.4 Comparing different error-bounds (ε) for CALU and COCALU . 49

6.5 Comparing the different VO types for CALU and COCALU with
AMCL . 51

6.6 Smooth trajectories using COCALUCP with ground truth and
circular robots. 53

6.7 Comparing the time and distance with different number of round
robots for CALU and COCALU 54

6.8 Comparing the jerk with different number of round robots for
CALU and COCALU . 55

v

6.9 Comparing the time and distance with different number of rect-
angular robots for CALU and COCALU 59

6.10 Comparing the jerk with different number of rectangular robots
for CALU and COCALU . 60

6.11 COCALUCP with four round turtlebots in real life. Picture over-
laid with actually driven paths. 61

6.12 Sample trajectories with four turtlebots in real life. Results for
ORCA and ClearPath velocity selection. 62

6.13 Sample trajectories with four turtlebots in real life. Results for
sampling based velocity selection. 63

6.14 Sample trajectories with four quadratic turtlebots in real life.
Results for sampling based velocity selection. 63

6.15 Sample trajectories with four quadratic turtlebots in real life.
Results for ORCA and ClearPath velocity selection. 64

6.16 COCALUCP with four quadratic turtlebots real life. Picture
overlaid with actually driven paths. 65

6.17 COCALUCP with three turtlebots and two static obstacles. Tra-
jectory plot and photo with overlaid trajectories. 66

6.18 COCALUCP with three turtlebots and two static obstacles. Three
trajectory plots. 67

6.19 COCALUCP with three turtlebots and an uncontrolled moving
obstacle. Trajectory plot and photo with overlaid trajectories. . . 68

6.20 COCALUCP with three turtlebots and an uncontrolled moving
obstacle. Four trajectory plots. 69

A.1 Comparing the different VO types for CALU and COCALU with
ground truth . 77

A.2 Sample trajectories comparing COCALUCP and CALUORCA
with AMCL and circular differential drive robots. 78

A.3 Sample trajectories comparing COCALUCP and CALUORCA
with AMCL and rectangular holonomic robots. 79

vi

List of tables

6.1 The number of collisions occurred during the simulation runs with
rectangular robots and AMCL. 57

6.2 The number of runs exceeding the time limit during the simula-
tion runs with rectangular robots and AMCL. 57

B.1 Results for 10 runs in real life with round shaped turtlebots. . . 80
B.2 Results for 10 runs in real life with quadratic shaped turtlebots. 80

vii

Chapter 1

Introduction

You have your way. I have my way. As for the right way, the correct
way, and the only way, it does not exist.

Friedrich Nietzsche

1.1 From local collision avoidance to multi-robot
collision avoidance

Local collision avoidance is the task of steering free of collisions with static and
dynamic obstacles, while following a global plan to navigate towards a goal
location. Local collision avoidance differs from motion planning, global path
planning and local path planning. In motion planning the environment of the
robot is assumed to be deterministic and known in advance, thus allowing to
plan a complete path to the goal. Global path planners usually operate on a
static map and find either the minimum cost plan (e.g. using A* or Dijkstra’s
algorithm) or any valid plan (e.g. sample based planners). Local path planners,
such as Trajectory Rollout and Dynamic Window Approaches (DWA), perform
forward simulations for a set of velocity commands; each resulting trajectory
is scored based on proximity to the goal location and a cost map built from
current sensor data. In principle this allows to stay clear of dynamical obstacles.
However, in multi-robot settings two problems arise:

1. Robots are not just dynamic obstacles; each robot itself is a pro-active
agent taking actions to avoid collisions.

2. The sensor source (e.g. laser range finder) is usually mounted on top of
the robot’s base to allow for a maximal unoccluded viewing angle. In
a system with homogeneous robots this implies that there is very little
surface area that can be picked up by the sensors of other robots and thus
prevents the robots from seeing each other.

1

Local collision avoidance addresses these challenges and is an important building
block in any robot navigation system targeted at multi-robot systems.

Although robot-robot detection is a requirement for multi-robot collision
avoidance, most approaches assume perfect sensing and positioning and avoid
local methods by using global positioning via an overhead tracking camera - or
are purely simulation based. Nevertheless, to be able to correctly perform local
collision avoidance in a realistic environment, a robot needs a reliable position
estimation of itself and the other agents without the help of external tools.

1.2 Problem definition

We address the problem of real-time local collision avoidance in multi-mobile
robot systems. As explained before, in a multi-mobile robot scenario, robots can
not merely be regarded as dynamic obstacles. Each robot is a pro-active agent,
taking actions to achieve a certain goal, e.g. to avoid collisions. Neglecting this
fact might lead to oscillations and thus highly inefficient trajectories or even
collisions.

The velocity obstacle (VO) is a geometric representation of all velocities
that will eventually result in a collision given the dynamic obstacle maintains
the observed velocity. Van den Berg et al. [30] introduced the reciprocal velocity
obstacle (RVO) to address reciprocity: for each pair of robots, one takes half
of the responsibility to avoid the other. RVO has since been extended to the
hybrid reciprocal velocity obstacle (HRVO) [25, 27] to overcome ”reciprocal
dances” that occur when robots can not reach independent agreement on which
side to pass each other.

The aforementioned approaches avoid local sensing methods by using global
positioning via an overhead tracking camera or assume perfect sensing (i.e.
purely simulation based), which greatly limits the possibilities for real life ap-
plications. Thus, this leads to the following three research goals.

1. We will alleviate the strong requirement for perfect sensing (i.e. global
positioning) using adaptive Monte-Carlo localization on a per-agent level.
While the VO paradigm guarantees local collision-free motion for a large
number of robots, given perfect knowledge of positions and speeds, a re-
alistic implementation requires further extensions to deal with inaccurate
localization and message passing delays. We will investigate bounding
the error introduced by localization and combining the computation for
collision-free motion with localization uncertainty.

2. A robot usually follows a certain goal. In motion planning this can be
modeled as each robot having a preferred velocity that the robot wants to
pursue in order to get closer to its current goal location. This goal could
be waypoints given by a global planning algorithm. In this thesis, we
focus on the local collision avoidance task and assume that the preferred
velocity is pointing directly towards the goal.
When using the VO paradigm, there exist multiple ways to select a new

2

collision free velocity. ORCA, introduced by van den Berg et al. [29], and
ClearPath (Guy et al. [17]) are two mathematical optimization methods
that search for the collision-free velocity that is closest to the preferred ve-
locity. We will examine how these approach compare to a simple sampling
based method.

3. Furthermore, we will investigate on how to incorporate static obstacles
in the VO formulation on real robots equipped with a laser range finder
(LIDAR) to provide a complete solution that can be used to avoid static
as well as dynamic obstacles in a multi-mobile robot scenario.

1.3 Contributions

This section lists concisely the contributions resulting from the research work
presented in this thesis.

• Chapter 3 introduces “Collision avoidance with localization uncertainty
(CALU)”: A novel approach that successfully combines per-agent local-
ization using adaptive Monte-Carlo localization (AMCL) with the velocity
obstacle paradigm. The localization uncertainty introduced by sensor and
actuator noise is bounded and taken into account for collision avoidance
by virtually enlarging the robots’ radii. The presented approach is situ-
ated in between centralized motion planning for multi-robot systems and
communication-free individual navigation. While actions will remain to be
computed independently for each robot, information about position, shape
and velocity is shared using inter-robot communication. This keeps the
communication overhead limited while avoiding problems like robot-robot
detection. The approach alleviates the strong requirement for perfect
sensing (e.g. global positioning) and results in a robust and distributed
system. A paper and demonstration about this chapter are published in
the Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2012) [18, 7] respectively.

• In Chapter 4, the previous approach is refined in order to overcome some
limitation of CALU. The enlargement of the robots’ radii can vastly over-
estimate the actual size and localization uncertainty of the robots. A
closer and error bounded convex approximation of the underlying local-
ization uncertainty distribution is used together with the Minkowski sum
of convex hull of the robot’s footprint to better approximate the situation.
The resulting algorithm “Convex outline collision avoidance under local-
ization uncertainty (COCALU)” is presented and explained. Additionally,
a way how to reuse the implementations for circular robots is shown, by
reversely fitting a circle in the constructed velocity obstacles such that
an equivalent velocity obstacle would have been created. This new circle
can be used as relative position and combined radius as in the previous

3

implementations. A paper about this chapter is published in the Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2012) [8].

• Chapter 5 explains how static obstacles can be integrated in the veloc-
ity selection methods. Additionally, it is explained how obstacles can be
detected as line-segments using a laser range finder (LIDAR), and how a
3D sensor source (e.g. a Microsoft Kinect) can be transformed to be used
with the same line detection algorithm.

• Chapter 6 extensively evaluates and compares the presented approaches
in various scenarios. Reasonable parameter settings are investigated that
lead to the best results. The methods are tested with up to eight robots
in simulation and with up to four robots in real life. In real life, various
more complex scenarios including static and dynamic obstacles are further
evaluated using the best performing method.

1.4 Related work

The related work in collision avoidance can roughly be divided into two parts;
single agent collision avoidance and multi-robot collision avoidance. In previous
work, many approaches make use of the “frozen world” assumption, i.e. that
the world is static in each timestep. In [28] a number of probabilistic approaches
are presented for a single robot environment. Potential fields are an approach
that creates a virtual force-field in the map, while around obstacles it is pushing
the robot away and near the goal it is pulling the robot towards it. In [21]
the limitations of this approach are presented and described. Another approach
is the so-called dynamic window approach as described in [14]. However, all
of these approaches lack the possibility to navigate safely within a multi-robot
environment.

In multi-robot collision avoidance research, there is often a centralized con-
troller. For instance in [4] an approach for safe multi-robot navigation within
dynamics constraints is presented. However, these approaches are not robust.
If the centralized controller fails, the whole system breaks.

Another common approach is motion planning, which can take dynamic
obstacles into account. The main assumption here is that the whole trajectory
of the dynamic obstacles is known as for instance in [10].

In [3] a method using negotiation is explained. In this case, the robots which
approach a collision state have to negotiate the lowest cost paths for both of
them. Negotiation relies heavily on communication. This is not desirable, since
communication is costly and sometimes error prone, e.g. a lossy wi-fi connection.

In [2] a probabilistic threat assessment method for reasoning about the safety
of robot trajectories is presented. Monte Carlo sampling is used to estimate col-
lision probabilities. In this approach, the trajectories of other dynamic obstacles
are sampled. This way, a global collision probability can be calculated. This
work is closely related to the research done in this thesis, however the approach

4

is probabilistic instead of the geometric representation used for the algorithms
we propose. Using the geometric approach, we can exploit the shapes and use
solution methods such as linear programming for finding the optimal solution
for the current state instead of using Monte Carlo sampling.

1.5 Outline

The remainder of this thesis is structured as follows:
Chapter 2 summarizes the approaches used in this thesis. The background

on the velocity obstacle paradigm is given and the construction of the various
velocity obstacle types (RVO, HRVO) is presented. Additionally, the concept
of truncation is explained. Three methods to select a new collision free velocity
are shown. Furthermore, the adaptive Monte-Carlo localization method and the
Robot Operating System (ROS) are introduced.

Chapter 3 introduces the first algorithm; “Collision avoidance with local-
ization uncertainty (CALU)”. The main components of this approach are ex-
plained, and in the following, it is shown how the features of the particle filter
(AMCL) can be used to derive a bound in the error introduced by localization.

Chapter 4 refines the previous approach to overcome some limitations of
CALU. The shortcomings are explained based on the “Corridor Problem”, where
robots using CALU are not able to move find a solution due to an elongated
particle cloud, which largely overestimates the robots’ localization uncertainties.
The construction of velocity obstacles with convex shapes is revisited and the
idea of convex hull peeling with an error bound is presented to get a closer
approximation of the actual localization uncertainty. Next, a way to reuse
the efficient implementations for circular shaped robots is derived. Finally,
it is shown how the new approach “Convex outline collision avoidance under
localization uncertainty (COCALU)” solves the corridor problem.

Chapter 5 explains how static obstacles can be integrated in the velocity
selection methods. Additionally, it is explained how obstacles can be detected
as line-segments using a laser range finder (LIDAR), and how a 3D sensor source
(e.g. a Microsoft Kinect) can be transformed to be used with the same line
detection algorithm.

Chapter 6 extensively evaluates and compares the presented approaches in
various scenarios. The algorithms are tested with up to eight robots in simula-
tion and with up to four robots in real life.

Chapter 7 concludes this thesis.

5

Chapter 2

Background

This thesis describes a decentralized multi-robot collision avoidance system
based on the velocity obstacle paradigm as introduced by Fiorini et al. [11]
and per-agent localization. This is in contrast to many other algorithms that
utilize centralized planning or assume perfect knowledge about the other robots’
positions, shapes and speeds.

The first section of this chapter focuses on the construction of the various
types of the velocity obstacles that have evolved over time to take reciprocality
into account. Afterwards, three examples of how to select a new collision free
velocity are explained and how dynamic and movement constraints for differ-
ent type of robots can be taken into account. In Section 2.5 adaptive Monte-
Carlo localization (AMCL) is explained and finally, the Robot Operating System
(ROS) is introduced.

2.1 Introduction

In an environment with only static obstacles, traditional planning algorithms
can be used. However, dynamic obstacles pose a tough challenge.

The velocity obstacle (VO) was introduced as one approach to deal with
dynamic obstacles. The VO is a geometric representation of all velocities that
will eventually result in a collision given the dynamic obstacle maintains the ob-
served velocity. To cover speed changes of the dynamic obstacles, it is necessary
that the controller runs multiple times per second.

The velocity obstacle paradigm was extended to incorporate reciprocality to
the reciprocal velocity obstacle (RVO). This approach assumes that each agents
takes half the responsibility for the collision avoidance. This result was further
refined to the hybrid reciprocal velocity obstacle (HRVO) to overcome situations
in which the reciprocal velocity obstacle could lead to reciprocal dances [20],
since the sides on which the robot wants to pass switches with each time step.

If we have calculated the area for each velocity obstacle in the velocity space,
we have areas leading to collisions, and collision free velocities. If the preferred

7

x

y

rA

rB

pA

pB

vA

vB

(a) Workspace configuration

vx

vy

rA + rB
pB − pA

vA

vB

(b) V OA|B

Figure 2.1: (a) A workspace configuration with two robots RA and RB on
collision course. They are described by a position, radius and velocity (i.e. pA,
rA and vA for robot RA). (b) Translating the workspace configuration into
velocity space and the resulting velocity obstacle (V OA|B) for RA. The cone
starting at the origin is created by calculating the tangents from the origin to
the disc of the combined radii (rA+ rB) at the relative position (pB−pA). This
cone is the velocity obstacle, when the robot RB would be static. By translating
the apex with the other robot’s velocity (vB), the resulting cone is the V OA|B .

velocity is leading to a collision, we want to find a velocity that is close to
the preferred velocity but still collision free. There are several approaches to
calculate this new velocity. Three examples (ORCA, ClearPath and sampling
based) will be explained in this chapter.

2.2 Velocity Obstacles (VO)

The velocity obstacle (VO) was introduced for local collision avoidance and nav-
igation in dynamic environments with multiple moving objects. The subsequent
definition of the VO assumes planar motions, though the concept extends to 3-D
motions in a straight forward manner.

Let us assume a workspace configuration with two robots on a collision
course as shown in Figure 2.1(a). If the position and speed of the moving object
(robot RB) is known to RA, we can mark a region in the robot’s velocity space
which leads to collision under current velocities and is thus unsafe. This region
resembles a cone with the apex at RB ’s velocity vB , and two rays that are
tangential to the convex hull of the Minkowski sum of the footprints of the two
robots. The Minkowski sum for two sets of points A and B is defined as:

A⊕B = {a+ b | a ∈ A, b ∈ B} (2.1)

8

For the remainder of this thesis, we define the ⊕ operator to denote the convex
hull of the Minkowski sum such that A⊕B results in the points on the convex
hull of the Minkowski sum of A and B.

The direction of the left and right ray is then defined as:

θleft = max
pi∈FA⊕FB

atan2((prel + pi)
⊥ · prel, (prel + pi) · prel) (2.2)

θright = min
pi∈FA⊕FB

atan2((prel + pi)
⊥ · prel, (prel + pi) · prel) (2.3)

where prel is the relative position of the two robots and FA ⊕FB is the convex
hull of the Minkowski sum of the footprints of the two robots. The atan2
expression computes the signed angle between two vectors. The resulting angles
θleft and θright are left and right of prel. If the robots are disc-shaped, the rays
are the tangents to the disc with the radius rA + rB at center prel as shown in
Figure 2.1(b). The angle can then be calculated as:

θleft = −θright = arcsin(
rA + rB
|prel|

) (2.4)

In the example in Figure 2.1(b), robot RA’s velocity vector vA points into
the VO, thus we know that RA and RB are on collision course. Each agent
computes a VO for each of the other agents. If all agents at any given time
step select velocities outside of the VOs, the trajectories are guaranteed to be
collision free. A velocity obstacle induced by RB for RA is denoted as V OA|B .

However, oscillations can still occur when the robots are on collision course.
All robots select a new velocity outside of all velocity obstacles independently,
hence, at the next time step, the old velocities pointing towards the goal will
become available again. Thus, all robots select their old velocities, which will
be on collision course again for the next calculation, where each robot selects a
again a collision free velocity outside of all VOs.

2.2.1 Reciprocal velocity obstacles (RVO)

To overcome these oscillations, the reciprocal velocity obstacle (RVO) was in-
troduced by Berg et al. [30]. The surrounding moving obstacles are in fact
also pro-active agents and thus aim to avoid collisions too. Assuming that each
robot takes care of half of the collision avoidance, the apex of the VO can be
translated to vA+vB

2 as shown in Figure 2.2(a). Furthermore, this leads to the
property, that if every robot chooses a velocity outside of the RVO closest to
the current velocity, the robots will pass on the same side. However, each robot
optimizes its commanded velocity in respect to a preferred velocity in order to
make progress towards its goal location. This can lead to reciprocal dances, i.e.
both robots first try to avoid to the same side and then to the other side. In a
situation with perfect symmetry and sensing, this behavior continues infinitely.

9

(vA+vB)
2

vx

vy

vA

vB

(a) RV OA|B

vx

vy

vA

vB

(b) HRV OA|B

Figure 2.2: (a) Translating the V OA|B by vA+vB
2 results in the reciprocal veloc-

ity obstacle (RV OA|B), i.e. each robot has to take care of half of the collision
avoidance. (b) Translating the apex of the RV OA|B to the intersection of the
closest leg of the RV OA|B to the own velocity, and the leg of the V OA|B that
corresponds to the leg that is furthest away from the own velocity. This encour-
ages passing the robot on a preferred side, i.e. in this example passing on the
left. The resulting cone is the hybrid velocity obstacle (HRV OA|B).

2.2.2 Hybrid reciprocal velocity obstacles (HRVO)

To counter these situations, the hybrid reciprocal velocity obstacle (HRVO)
was introduced by Snape et al. [25]. Figure 2.2(b) shows the construction of
the HRVO. To encourage the selection of a velocity towards the preferred side,
e.g. left in this example, the other leg of the RVO is substituted with the
corresponding leg of the VO. The new apex is the intersection of the line of the
one leg from RVO and the line of the other leg from the VO. This reduces the
chance of selecting a velocity on the ”wrong” side of the velocity obstacle and
thus the chance of a reciprocal dance, while not over-constraining the velocity
space. The robot might still try to pass on the “wrong” side, e.g. another robot
induces a HRVO that blocks the whole side. However, all other robots will soon
adapt to the new side.

2.2.3 Truncation

When the workspace is cluttered with many robots that do not move or only
move slowly, the apexes of the VOs are close to the origin in velocity space; thus
rendering the robots immobile. This problem can be solved using truncation.

The idea of a truncating a VO can be best explained by imagining a static
obstacle. A velocity in the direction of the obstacle will eventually lead to
collision, but not directly. Hence, we can define an area in which the selected

10

rA+rB

τ

vx

vy

(a) Truncated VO (V Oτ)

vx

vy

(b) Approximated V Oτ

Figure 2.3: Truncation. (a) Truncation of a VO of a static obstacle at τ = 2.
(b) Approximating the truncation by a line for easier calculation.

velocities are safe for at least τ time steps. The truncation has then the shape
of the Minkowski sum of the two footprints, shrunk by the factor τ . If the
footprints are discs, the shrunken disc that still fits in the truncated cone has a
radius of rA+rB

τ , see Figure 2.3(a). The truncation can be closely approximated
by a line perpendicular to the relative position and tangential to the shrunken
disk as shown in Figure 2.3(b). V Oτ denotes a truncated velocity obstacle.

Applying the same method to create a HRVO and RVO from a VO, we can
create a truncated HRVO and truncated RVO (HRV Oτ and RV Oτ) respec-
tively from of V Oτ by translating the apex accordingly.

2.3 Selection of collision-free velocity

When all velocity obstacles are calculated, the union of these velocity obstacles
depicts the set of velocities that will eventually lead to a collision. Vice versa, the
complementary region is the region that holds all “safe” velocities, i.e. velocities
that are collision-free. If we are using truncation, the region is collision free for
at least the defined τ timesteps. Within this region the new velocity has to be
selected. In order to do this efficiently, there are several ways to calculate the
new velocity. In the following, three ways will be presented.

2.3.1 Optimal Reciprocal Collision Avoidance
(ORCA)

To enable efficient calculation for safe velocities, Optimal Reciprocal Collision
Avoidance (ORCA) was introduced by van den Berg et al. [29]. Instead of
velocity obstacles, agents independently compute half-planes of collision-free

11

vx

vy

vA

vB

(a) V Oτ
A|B

vA
un

vx

vy

(b) Constructing n and u

vA
1
2u

vx

vy

(c) ORCAA|B

vpref
A

vopt
A

vx

vy

(d) Calculating voptA

Figure 2.4: ORCA. (a) A truncated velocity obstacle (V OτA|B) for robot RA. (b)
Constructing u and n. Where u is the vector from vA to the closest boundary
of V OτA|B and n is the outward normal in the direction of u. (c) Calculating the

ORCA half-plane (ORCAA|B) perpendicular to u at vA + cu. (d) The velocity

space with four ORCA half-planes. voptA is the velocity closest to vprefA that is
collision free.

velocities for each other agent. The intersection of all half planes is the set of
collision free velocities. The optimal velocity from this set can be calculated by
solving a linear program minimizing the distance to the desired goal velocity.

More specifically, let us assume a 2-dimensional workspace with N disk-
shaped robots. Each robot Ri ∈ N has a current position and velocity, pi, vi ∈
R2. The robots want to reach a certain goal location, and define a desired
velocity pointing towards the goal, defined as vprefi ∈ R2. Each robots’ objective

12

is to chose the optimal next velocity command vopti such that it is collision free

for at least τ time steps and as close as possible to the preferred velocity vprefi .
The set of collision free velocities can be calculated by constructing the

truncated VO (Figure 2.4(a)) for each robot and then looking for the point that
is closest to the edge of the VO. The vector from the current velocity towards
that point is called u (Figure 2.4(b)). Afterwards a half-plane is constructed

perpendicular to the line vprefi + c ∗ u as shown in Figure 2.4(c). The variable c
depicts the amount of responsibility each robot takes for the collision avoidance,
where c = 1

2 means that each robot takes half of the responsibility. ORCAi|j
denotes the ORCA half-plane induced by Rj for Ri.

If we have multiple robots, the set of collision free velocities is the intersection
of all half-planes. The closest point to the current preferred velocity within the
set of collision free velocities is the optimal next velocity command vopti . A
graphical representation is shown in Figure 2.4(d).

More formally, for the calculation of ORCAi|j the vector to the closest point
of the edge of V Oi|j is calculated by:

u = (min
v∈V Oi|j

||v − (vi − vj)||)− (vi − vj) (2.5)

and the vector n is the normal pointing outwards of V Oi|j at the point (vi −
vj) + u. Then:

ORCAi|j = {v ∈ R2|(v − (vi + c ∗ u)) ∗ n ≥ 0} (2.6)

The set of all collision free velocities for Ri is then defined as:

ORCAi = SAHVi
∩
⋂
i6=j

ORCAi|j (2.7)

where SAHVi
is the set of allowed holonomic velocities, based on kinematic and

motion constraints. The new optimal holonomic velocity command is defined
as:

vopti = min
v∈ORCAi

||v − vprefi || (2.8)

This can be solved efficiently in a low dimensional linear program as described
in [29].

2.3.2 ClearPath

Another method to efficiently compute collision free velocities, is the ClearPath
algorithm introduced by Guy et al. [17]. The algorithm is applicable to many
variations of velocity obstacles (VO, RVO or HRVO) represented by line seg-
ments or rays, thus for the truncated VOs the approximation with a line is used.
ClearPath follows the general idea that the collision free velocity that is closest
to preferred velocity is: (a) on the intersection of two line segments of any two
velocity obstacle, or (b) the projection of the preferred velocity onto the closest
leg of each velocity obstacle. All points that are within another obstacle are
discarded and from the remaining set the one closest to the preferred velocity
is selected. Figure 2.5 shows the graphical interpretation of the algorithm.

13

vx

vy

vpref
A

vopt
A

(a) Projection of vprefA on V OA|B

vx

vy

vpref
A

vopt
A

(b) ClearPath

Figure 2.5: (a) The preferred velocity vprefA is projected on the closest leg of
the V OA|B . (b) ClearPath enumerates intersection points for all pairs of VOs
(solid dots) and projection points (open dots). The point closest to the preferred
velocity (dashed line) and outside of all VOs is selected as new velocity (solid
line).

2.3.3 Sampling based

Both of the previous described methods are optimal and exhaustive. With
ORCA linear programming is used to find the optimal solution for the current
situation. ClearPath enumerates all possibilities and selects the point that is
closest to the preferred velocity. Another method is to generate achievable
sample velocities based on the motion constraints and to test whether these
velocities are collision free and how well they are suited. Each samples gets a
score according to some properties, e.g. in this case:

1. The distance to the preferred velocity.

2. The distance to the current velocity.

3. If the velocity is within a velocity obstacle or not.

4. The distance to the closest velocity obstacle.

Each value is weighted and added up to a total score. The velocity sample that
scored highest will be selected as the next commanded velocity.

2.4 Kinematic and dynamic constraints

Robots can only accelerate and decelerate within certain dynamic constraints.
If the acceleration limits and motion model of the robot is known, a region of
admissible velocities can be calculated and approximated by a convex polygon.

14

vomni

P
d i f f
t 1

P omn i
t 1

ε

Figure 2.6: The tracking error (ε) is defined as the difference between the posi-
tion that a holonomic robot would be in after driving with vomni for t1 (P omnit1)

and the position of the differential drive robot at t1 (P difft1).

In order to execute the computed collision free velocity, the robot has to
be able to instantaneously accelerate to any velocity in the two dimensional
velocity space. This implies that the velocity obstacle approach requires a fully
actuated holonomic platform, able to accelerate into any direction from any
state. However, differential drive robots with only two motorized wheels are
much more common due to their lower price point.

To incorporate the differential drive constraints, Kluge et al. introduced a
method to calculate the effective center of a differential drive robot [19]. The
effective center represent a translation of the center of rotation to a point that
can virtually move into all directions. It can be incorporated in the VO formu-
lation by virtually enlarging the robots’ radii prior to the calculations. These
adaptations provide additional maneuverability to handle the differential drive
constraints. ORCA-DD [26] extends this idea and enlarges the robot to twice
the radius of the original size to ensure collision free and smooth paths for
robots under differential constraints. The effective center is then located on the
circumference of the robot at the center of the extended radius. However, this
quadruples the virtual size of the robot, which can result in problems in narrow
corridors or unstructured environments.

Another method to handle non-holonomic robot kinematics has been intro-
duced by Alonso-Mora et al [1]: NH-ORCA is the generalized version of ORCA
for any non-holonomic robot. However, the approach to handle dynamic and
kinematic constraints can be applied to any VO-based approach. The under-
lying idea is that any robot can track a holonomic speed vector with a certain
tracking error ε. This error depends on the direction and length of the holo-
nomic velocity, i.e. a differential drive robot can drive an arc and then along a
straight line which is parallel to a holonomic vector in that direction as shown

15

in Figure 2.6. The time needed to get parallel to the holonomic trajectory is
defined as t1. The tracking error (ε) is then defined as the difference between
the position that a holonomic robot would be in after driving with vomni for t1
(P omnit1) and the position of the differential drive robot at that time (P difft1).
A set of allowed holonomic velocities is calculated based on the current speed
and a maximum tracking error ε. To allow smooth and collision free naviga-
tion, the virtual robot radii have to be increased by the tracking error ε, since
the robots do not track the desired holonomic velocity exactly. Additionally, in
dense configuration with many robots, turn in-place can be included. The set
of allowed holonomic (SAHVi

) velocities can be calculated for any possible angle
and error. However, any further constraint in the linear program slows down
the computation, thus the feasible set can be approximated by a polygon. The
velocity space is then constrained by this polygon.

The approach to handle non-holonomic robots given by NH-ORCA is pre-
ferred over ORCA-DD, since the virtual increase of the robots’ radii is only by a
size of ε instead of doubling the radii. Furthermore, it is a general solution that
is applicable to any kind of robot that is able to track a holonomic trajectory
within a marginal error. To sum up, the velocity space of each robot can be
restricted to a set of allowed holonomic velocities (SAHVI

) such that dynamic
and kinematic constraints are taken into account.

2.5 Adaptive Monte-Carlo Localization

The localization method employed in our work is based on sampling and im-
portance based resampling of particles, in which each particle represents a pos-
sible pose and orientation of the robot. More specifically, we use the adaptive
Monte-Carlo localization method, which dynamically adapts the number of par-
ticles [12].

Monte-Carlo localization (also known as a particle filter), is a widely ap-
plied localization method in the field of mobile robotics. It can be generalized
in an initialization phase and two iteratively repeated subsequent phases, the
prediction and the update phase.

In the initialization phase, a particle filter generates a number of samples
N , which are uniformly distributed over the whole map of possible positions. In
the 2.5D case, every particle si has a x- and y-value and a rotation si = (x̂, ŷ, θ̂).
The particles are usually initialized in such a way, that only valid positions are
taken into account, i.e. they cannot be outside of the map or within walls.

The first iterative step is the prediction phase, in which the particles of
the previous population are moved based on the motion model of the robot,
i.e. the odometry. Afterwards, in the update phase, the particles are weighted
according to the likelihood of the robot’s measurement for each particle. Given
this weighted set of particles the new population is resampled in such a way that
the new samples are selected according to the weighted distribution of particles
in the old population. In the following subsections, the two phases are explained
in further detail.

16

2.5.1 Prediction phase

After each movement, the position of each particle is updated according to the
belief of the agent. More specifically, if the robot has moved forward 10 cm, each
particle is moved 10 cm into the direction of its rotation. If the robot rotates,
the particles are rotated accordingly. Thus, if a holonomic robot moves from
state xk = (xk, yk, θk) to xk+1 = (xk+1, yk+1, θk+1), the particles are translated
by:  x̂k+1

ŷk+1

θ̂k+1

 =

x̂k + ρcos(θ̂k + ∆θ)

ŷk + ρsin(θ̂k + ∆θ)

θ̂k + ∆θ

 (2.9)

Where ρ =
√

∆x2 + ∆y2 and ∆θ = θk − θk+1. However, both ρ and ∆θ are
corrupted by noise due to errors in actuators and odometry. Hence, the more
accurate the robot’s motion model is, the better the performance of the pre-
diction phase. For non-holonomic robots, the update equations can be changed
accordingly [28].

2.5.2 Update phase

After a sensor update, the expected measurement for each particle is calculated.
This means, measured sensor values are compared with the world view that is
expected if the robot would be at the position of the particle (i.e. by a laser
scan matcher). The new weight (wik) is the probability of the actual sensor
measurement (zk) given the particles position (sik) at time k as shown below:

wik+1 = p(zk|sik) (2.10)

Since w is a probability distribution, the weight for each particle is re-normalized
after each update:

wik =
wik∑
i w

i
k

(2.11)

Particle filters only need a large number of samples N to correctly identify
the position when the initial state is unknown. However, when the present
localization is quite accurate already, less particles are needed to keep track of
the position changes. Hence, the number of samples can be changed adaptively
depending on the position uncertainty. We use the approach of KLD-sampling
(using the Kullback-Leibler distance), which determines the minimum number
of samples needed, such that with probability 1− δ the error between the true
posterior and the sample-based approximation is less than ε. The number of
samples can be calculated as:

n =
1

2ε
χ2
k−1,1−δ (2.12)

17

(a) End of corridor (b) Long corridor (c) Open space

Figure 2.7: Typical particle filter situations. (a) A well localized robot at the
end of a corridor resulting in a particle cloud with small variance. (b) In an
open ended hallway the sensor only provides valid readings to the sides, resulting
in an particle cloud elongated in the direction of the corridor. (c) In an open
space no sensor readings result in a particle cloud driven purely by the motion
model.

This can be approximated using the Wilson-Hilferty transformation as:

n =
k − 1

2ε

{
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

}
(2.13)

where k is the number of bins of the discrete distribution from which the particles
are sampled. For further details can be found in [13].

2.5.3 Kidnapped robot and false localization

A problem occurs if there are several locations which are represented similar
according to the sensor values. For example two hallways, which have only one
door on the right. In these cases, it happens that the robot localizes itself at the
wrong position. Furthermore, the robot can be moved by an external force, like
a human. This is also known as the kidnapped robot problem. To incorporate
sudden changes or wrong localization, a fraction of particles can be moved to a
random location. This increases the robustness of the system.

In our work, AMCL is not used for global localization, but rather initialized
with a location guess that is within the vicinity of the true position. This enables
us to use AMCL for an accurate position tracking without having multiple
possible clusters in ambiguous cases.

However, a common problem occurs if the environment looks very similar
along the trajectory of the robot, e.g. a long hallway; or a big open space with
only very few valid sensor readings. In these cases, particles are mainly updated
and resampled according to the motion model leading to the situations shown
in Figure 2.7.

On the left, we have a well localized particle cloud that is almost circular,
in the middle, the point cloud is elongated in the direction of the corridor,

18

Figure 2.8: Using the ROS visualization tool rxgraph. It is showing the currently
running nodes and the connections, i.e. topics shared between the nodes.

since there are only sensor readings on the distance to the walls left and right.
The right picture shows the situation in open space, when there are no sensor
readings at all. The cloud disperses according to the motion model and is not
resampled, since there are no valid sensor readings.

2.6 Robot Operating System (ROS)

The presented algorithms are implemented in the framework of the open source
Robot Operating System (ROS) [24]. ROS is designed as middle-ware and frame-
work for robotic platforms. Additionally, it is an open source toolkit to prevent
“reinventing the wheel”. One of the primary goals stated on the ROS website
is to “support code reuse in robotics research and development”1.

ROS provides many useful tools, hardware abstraction and a message passing
system between nodes. Nodes are self contained modules that run independently
and communicate which each other over so called topics using a one-to-many
subscriber model and the TCP/IP protocol. Naturally this is of great impor-
tance when working with distributed systems. However, even in single robot
operation, the required functionality can increase immensely, i.e. components
for sensor and actuator controls, processing of sensor data together with local-
ization, mapping, navigation and collision avoidance, just to name a few.

Each system has a so-called ROS-master, which is a name server that pro-
vides the nodes with the information about which topics are published by which
nodes. Thus, each node has to register the topics it publishes at the ROS-master.
Another node that wants to subscribe to a topic uses the ROS-master to lookup
the address of the publishing on this topics and initiates a direct connection with

1For more information see: http://www.ros.org/.

19

them. Hence, after the initial lookup phase, the nodes are connected directly
like in a peer-to-peer network.

The software hierarchy can be summarized as follows. Like major operating
systems, ROS comes in releases that provide the main functionality and are up-
dated roughly twice a year. To further extend the functionality, stacks are used
to bundle many packages together, while in each package there can be several
nodes that perform a certain task. These stacks and packages are developed by
universities, companies and private people all over the world. A package and
stack can be easily shared among the whole community by adding it to an index
on the main ROS website.

ROS itself is mainly written in C++ and Python. The ROS-nodes use a
client library that is provided for C++, Python, Java, Matlab, Lisp and some
other languages. However, any programming language can be used, when the
message-passing system and the protocol to communicate with the ROS-master
are implemented.

In addition, the modularity enables to easily create various configurations
for different settings. The existing modules can be exchanged and hooked up
together; in our approach, the same code is used in simulation and on the real
robots, only the surrounding modules, e.g. drivers for the sensors, have to
be changed. To run our system on any other ROS-enabled robots, only the
navigation module needs to be adapted according to the robot’s motion and
sensor model. The system runs primarily under Ubuntu, while other operating
systems are (partially) supported.

Figure 2.8 shows the ROS tool rxgraph for a simulated robot using our sys-
tem. The tool is useful to see a graph of the currently running nodes (vertexes)
and connections (edges) within the system. The graphs are created automati-
cally at runtime, so debugging is facilitated.

To sum up, ROS allows us to reuse many preexisting software packages
and drivers. Furthermore, it provides a common framework to enable easy
configuration for different types of robots and situations.

2.7 Summary

This chapter has described the theoretical background of the two main princi-
ples, the VO-paradigm and AMCL, that are used for the proposed algorithms.
For the VO-paradigm, the translation of a workspace situation into a velocity
obstacle is described and it is explained how the velocity obstacle can further
be shifted to handle reciprocality and to overcome reciprocal dances. Addi-
tionally, three methods to select a new velocity are introduced. Furthermore,
the Robot Operating System (ROS) is introduced in which the algorithms are
implemented.

20

Chapter 3

Collision avoidance with
localization uncertainty
(CALU)1

We propose a system that builds upon the two main components introduced in
Chapter 2, i.e. the VO paradigm and AMCL, to provide collision free motion
in a real-world system of robots. In this chapter we will revisit the assumptions
commonly made by all velocity-based collision avoidance algorithms and moti-
vate our choice for per agent-based localization in combination with position and
velocity information sharing using inter-robot communication. Furthermore, we
will point out the necessary addition of sensor uncertainty, leading to our first
proposed algorithm Collision Avoidance with Localization Uncertainty (CALU).

3.1 Introduction

VO based algorithms do not require any inter-robot negotiation to find a colli-
sion free motion trajectories and are hence in principal fully distributed. How-
ever, these methods require perfect information about the positions, velocities
and shapes of all other robots. In order to preserve the distributed nature
of this approach, robots need to be able to accurately identify other robots
using on-board sensors; furthermore, positions and velocities have to be de-
duced from the same data. The list of typical sensors for mobile robots includes
stereo cameras, laser range finders and lately 3D image sensors (e.g. Microsoft

1This chapter is based on [7, 18]:
Daniel Claes, Daniel Hennes, Karl Tuyls, and Wim Meeussen. CALU: Collision avoidance with
localization uncertainty [Demonstration]. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), Valencia, Spain, June 2012
Daniel Hennes, Daniel Claes, Karl Tuyls, and Wim Meeussen. Multi-robot collision avoidance
with localization uncertainty. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), Valencia, Spain, June 2012.

21

Figure 3.1: CALU with four robots. ROS visualization tool rviz is used to show
the trajectories and localization particles of four robots.

Kinect). These sensors deliver large data-streams that require considerable com-
putational power to process even for the detection and classification of static
obstacles.

The computational requirement is not the only problem when considering
robot-robot detection. As low-end laser range finders (e.g. Hokuyo URG-04LX)
become widely available even for mobile robotic projects on a small budget,
they are the preferred sensor choice due to their high accuracy, resolution and
field of view. However, the laser range finder is usually mounted on top of the
robot’s base to allow for a maximal unoccluded viewing angle. In a system with
homogeneous robots that means that there is very little surface area that can
be picked up by the sensors of other robots and thus prevents the robots from
observing each other.

Even though the laser range finder provides a high accuracy in the readings,
the localization and tracking of the robot using AMCL will in general have the
tendency to differ to some extent from the true position of the robot. If the size
of the localization and tracking error is in the order of magnitude of the robots
radius, collisions are bound to happen.

Previous approaches have worked around these problems by providing global
positioning to all robots based on an overhead tracking camera. Such a system
is not distributed, since a host computer connected to the camera needs to
process the sensor data and communicate with all robots to provide position
and velocity data. If this machine fails the system breaks.

3.2 Approach

We propose to utilize agent-based localization and inter-robot communication
to provide a system that is more realistic in real-world scenarios (i.e. without
the need for external positioning data) and also more robust (i.e. single com-
ponent failure does not lead to system failure). Our approach, called “collision
avoidance with localization uncertainty (CALU)”, results in a fully decentralized
system that uses local communication to share robot state information in order

22

to ensure smooth collision free motion; an example for four robots is shown in
Figure 3.1. Below we describe the four key components of this approach.

3.2.1 Platform

The robots are assumed to be differential or holonomic drive robots. Required
sensors are a laser range finder and wheel odometry. For simplicity we assume
a circular footprint; other shapes can be approximated by the circumscribed
radius. In order to connect the different subsystems, including device drivers
and software modules, we use ROS (see Section 2.6).

3.2.2 Sensor processing and localization

Each robot integrates wheel odometry data which is in turn used to drive the
motion model of AMCL (see Section 2.5), hence tracking the pose of the robot.
Laser range finder scans are used in the update phase of AMCL. The uncertainty
of the current localization, i.e. the spread and weight of the particles, is taken
into account for the calculation of collision free velocities as will be explained
in further detail in Section 3.3. We assume a prior static map that is used
for localization and available to all robots, thus providing a consistent global
coordinate frame.

3.2.3 Inter-robot communication

Each robot broadcasts its position and velocity information in the global coor-
dinate frame on a common ROS topic. Each robot also subscribes to the same
topic and caches position and velocity data of all other robots. Message delays
are taken into account and positions are forward integrated in time accord-
ing to the motion model of robots using the last known position and velocity
information.

3.2.4 Collision avoidance

ORCA, ClearPath or the sampling based approach (see Section 2.3.1) in com-
bination with the constraints for non-holonomic robots (see Section 2.4) can
be used to compute collision free velocities according to the aggregated posi-
tion and velocity data of all surrounding robots. The allowed tracking error for
non-holonomic robots is scaled depending on current speed of the robot and
the minimal distance to the closest obstacle or other robot. As a last step we
incorporate localization uncertainty in the velocity computation as detailed in
Section 3.3.

3.3 Localization Uncertainty

The key idea of CALU is to bound the error introduced by localization. To
derive this bound, we revisit the particle filter described in Section 2.5.

23

Let xk = (x, y, θ) be the state of the system. The posterior filtered density
distribution p(xk|z1:k) can be approximated as:

p(xk|z1:k) ≈
N∑
i=1

wik δ
(
xk − sik

)
(3.1)

where δ(·) is the Dirac delta measure. We recall that a particle state at time k

is captured by sik = (x̂ik, ŷ
i
k, θ̂

i
k). In the limit N →∞, Equation 3.1 approaches

the real posterior density distribution. We can define the mean µ = (µx, µy, µθ)
of the distribution accordingly:

µx =
∑
i

wik x̂
i
k (3.2)

µy =
∑
i

wik ŷ
i
k (3.3)

µθ = atan2

(∑
i

wik sin(θ̂ik),
∑
i

wik cos(θ̂
i
k)

)
(3.4)

The mean gives the current position estimate of the robot. However, the es-
timate is likely to be noisy and we have to take this uncertainty into account
in order to ensure collision free motion. The probability of the robot residing
within a certain area A at time k is:

p(xk ∈ A|z1:k) =

∫
A
p(x|z1:k)dx (3.5)

We can rewrite (3.5) using (3.1) as follows:

p(xk ∈ A|z1:k) ≈
∑
∀i:sik∈A

wik δ
(
xk − sik

)
(3.6)

From (3.6) we see that for any given ε ∈ [0, 1) there is an A such that:

p(xk ∈ A|z1:k) ≥ 1− ε (3.7)

Given sufficient samples, the localization uncertainty is thus bounded and we
can guarantee that the robot is located within area A with probability 1− ε.

If a robot radius is inflated by d, the center point of the robot can in turn
be translated by a maximum distance of d from its original position while the
resulting disc still circumscribes the entire robot. We next derive d such that
Equation (3.7) holds.

We define a subset S ⊂ {s1, . . . , sN} with

dS = max
(x,y,θ)∈S

(
(x− µx)

2
+ (y − µy)

2
)

(3.8)

the maximal distance to the mean. Furthermore, we define:

S : S ∈ S iff p(xk ∈ S|z1:k) ≥ 1− ε

24

There is a minimal subset S∗ ∈ S such that (3.7) holds and the maximal distance
to the mean is minimized:

S∗ = arg min
S∈S

dS (3.9)

Thus, if the robot radius is inflated by d = dS∗ the resulting disc circumscribes
the entire robot with a probability of 1− ε.

The implementation of this computation is straightforward and efficient. An
implementation of AMCL as explained in Section 2.5 commonly tracks particles
in a k-d tree structure. The algorithm localizes the node closest to the mean µ
and subsequently increases the radius d while adding particles that fall into the
radius to the set S∗ and accumulating the weight sum until the threshold 1− ε
is reached.

3.4 Summary

In this chapter, we introduced a decentralized approach for collision avoidance.
The localization is per-agent based and local communication is only needed to
share position, shape and velocity data. This data could come from sensory
data on the robots itself, but this would require additional sensors and image
processing, which is beyond the scope of this thesis. Additionally, the assump-
tions made for this approach are that some form localization is running on any
autonomous robot anyway and that in most multi-robot settings local commu-
nication should be available.

Furthermore, we introduced an algorithm that bounds error introduced by
the localization to a pre-set level. This is necessary to limit the inflation of
the radius and thus preventing of rendering the robots immobile. While this
approach works well in many cases, there are some limitations that we will
address in the following chapter.

25

Chapter 4

Convex outline collision
avoidance under localization
uncertainty (COCALU)1

In this chapter, we introduce “convex outline collision avoidance under localiza-
tion uncertainty (COCALU)” as an extension of CALU. In the following section,
we will present the corridor problem, which illustrates some of the shortcoming
of CALU in more detail. Afterwards, the approach and the algorithm are de-
scribed, followed by a short discussion about the complexity. The chapter closes
with a short summary.

4.1 Introduction

In the previous chapter CALU was introduced. CALU successfully combines
per-agent based localization and the VO paradigm to provide collision free mo-
tion in a real-world setting with multiple robots. However, some shortcomings
prevail. Sub-optimal behavior is encountered when (a) the footprint of the robot
is not efficiently approximated by a disk; and (b) the pose belief distribution
of AMCL is not circular but elongated along one axis (typically observed in
long hallways). In both situations, the resulting VOs vastly overestimate the
unsafe velocity regions. Hence, this conservative approximation might lead to a
sub-optimal solution - or no solution at all.

COCALU uses the same approach based on decentralized computation, on-
board localization and local communication to share relevant shape, position
and velocity data between robots. This data is used to build the velocity ob-

1This chapter is based on [8]:
Daniel Claes, Daniel Hennes, Karl Tuyls, and Wim Meeussen. Collision avoidance under
bounded localization uncertainty. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Algarve, Portugal, October 2012.

27

rA

dA

rB

dB

vA

vB

(rA + dA)

vx

vy

vA

Figure 4.1: The corridor problem: Approximating the localization uncertainty
(and the footprint) with circumscribed circles, vastly overestimates the true
sizes, such that the robots do not fit next to each other. Thus, the HRVO
together with the VO of the walls invalidates all forward movements.

stacle representation using HRVOs for convex footprints in combination with a
close and error-bounded convex approximation of the localization density dis-
tribution.

4.1.1 Problematic situations with CALU

As mentioned before, a sub-optimal behavior is encountered if the footprint of
the robots are vastly overestimated by the circumscribed radius, e.g. in the
case of a rectangular robot. Additionally, if the AMCL pose distribution is not
shaped circular, but elongated around one axis, or solely based on the motion
model of the robot as presented in Figure 2.7, the approximation with a circle is
problematic. Figure 4.1 shows an example configuration in which CALU would
not be able to move forward, since the two enlarged disks do not fit anymore
next to each other in the corridor. In this case, it is due to the elongated position
uncertainty, which is largely overestimated by the circle.

4.2 Approach

The key difference between CALU and COCALU is to use the actual shape
of the particle cloud instead of using a circumscribed circle. In this approach,
we approximate the shape of the particle filter by a convex hull. However,
using the convex hull of all particles can results in large over-estimations, since
outliers in the particles’ positions inflate the resulting convex hull immensely.
As a solution, we use “convex hull peeling”, which is also known as “onion
peeling” [6], in combination with an error bound ε.

28

vA

vB

x

y

(a) Workspace configuration

FA ⊕ FB

P ∗prel

vx

vy

(b) V OA|B

prel

τ vx

vy

(c) V Oτ
A|B

prel

τP ∗

τ vx

vy

(d) approximated V Oτ
A|B

Figure 4.2: (a) A workspace configuration with two convex shaped robots. (b)
The resulting V OA|B , when assuming that the other robot is not moving. (c)
Truncating the V OA|B . (d) Approximating the V OτA|B by a line to limit calcu-
lation overhead.

4.3 VOs with convex shapes

In order to understand convex outline VOs as introduced in Section 2.2 in
more detail, we will change the example from Figure 2.1(a) to the workspace
presented in Figure 4.2(a) with two differently shaped convex outline robots.
The V OA|B is obtained by translating the Minkowski sum (M) of the two robot
footprints (FA and FB) by the relative position (prel) and using Equation (2.2)
and Equation (2.3) to obtain the angles of the left and right leg respectively as
shown in Figure 4.2(b).

To truncate the V OA|B , we have to shrink the Minkowski sum M by the
truncation factor τ and translate it by prel

τ (Figure 4.2(c)). To facilitate the

29

(a) Convex hull peeling (b) Minkowski sum

Figure 4.3: Convex hull peeling and Minkowski sum. (a) Three iterations of
convex hull peeling. The dotted lines are the convex hulls that removed after
each iteration. The solid line is the resulting convex hull after three iterations.
(b) Minkowski sum of the resulting convex polygon and a circular footprint.

calculations and decrease the number of borderlines for the V OτA|B , we can
approximate it by the line perpendicular to the relative position and passing
through P ∗ (Figure 4.2(d)). This is defined as the point of the Minkowski sum
(M) translated by the relative position (prel) and closed to the origin:

P ∗ = min
P∈M

|prel + P | (4.1)

As can be seen from Figure 4.2(c) and Figure 4.2(d) the approximation only
marginally increases the size of the V OτA|B . After V OτA|B is calculated, the
same rules as explained in Section 2.2.1 and Section 2.2.2 apply to calculate the
RV OτA|B and HRV OτA|B respectively.

4.4 Convex hull peeling with an error bound for
convex-outline robots

The idea behind the convex hull peeling is to create layers of convex hulls. This
can be intuitively explained by removing the points on the outer convex hull,
and to calculate a new convex hull of the remaining points. This process can be
repeated iteratively until the remaining points are less than two. Figure 4.3(a)
shows three iterations of the method on an example point cloud.

COCALU finds the convex hull layer in which the probability of the robot
being located in is greater than 1 − ε. To derive this bound, we revisit the
localization uncertainty described in Section 3.3. Given sufficient samples, we
can guarantee that the robot is located within area A with probability 1− ε.

30

Algorithm 1 COCALU

Input: (FA, pA, vA) : Robot footprint, position and velocity,
(si, wi) ∈ P = S ×W : AMCL weighted particle set,
(Fj , pj , vj) ∈ A: List of neighboring Agents,

ε : error bound, vprefA : preferred Velocity,
τ : truncation timesteps

bound← 0
while bound ≤ ε do

Create convex hull C of S
bound← bound+

∑
∀i:si∈C wi

P ← P \{(si, wi) ∈ P|si ∈ C}
end while
MA ← FA ⊕ C
for all (Fj , pj , vj) = Aj ∈ A do
Mj ← Fj ⊕MA

Construct V OA|j from Mj at pj − pA
Construct V OτA|j from V OA|j with τ
if ORCA then

Construct ORCAA|j from V OτA|j
else

Construct HRV OτA|j from V OτA|j with vj and vA
end if

end for
if ORCA then

Use ORCA linear program to calculate new velocity vnewA from vprefA and
all ORCAA|j

else
ClearPath or the sampling based approach to calculate new velocity vnewA

from vprefA and all HRV OτA|j
end if

In order to find this specific convex hull enclosing area A, we propose an
iterative process as described in the first part in Algorithm 1. As long as the
sum of the weights of the removed samples does not exceed the error bound,
we create the convex hull of all (remaining) particle samples. Afterwards, we
sum up all the weights of the particles located on the convex hull and add this
weight to the previously computed sum. If the total sum does not exceed the
error bound, all the particles that define the current convex hull will be removed
from the particle set and the process is repeated.

When the convex hull is found, we calculate the Minkowski sum of the robot’s
footprint and the convex hull. The convex hull of the Minkowski sum is then
used as new footprint of the robot as shown in Figure 4.3(b).

31

prel

c

C

P ∗
vx

vy

(a) Circular approximation of convex outline

C1

C2

P ∗
vx

vy

(b) Two possible solutions

Figure 4.4: (a) Fitting a circle within the V OA|B , such that if the V OA|B would
be truncated with τ = 1 still all points of the Minkowski sum would be covered.
(b) For a given point P ∗ that is the closest point to the origin, two circles exist
that fulfill the properties. C1 is the preferred circle, since it leads to the smaller
V OτA|B .

4.5 ORCA with convex shapes

ORCA is well-defined and can be very efficiently implemented for circular robots,
but it cannot be used in a straight forward way for convex outline robots.
However, using the fact that there always exists a circle that has the two legs of
the V OA|B as shown Figure 4.2(b) as tangents such that the resulting V O∗A|B is
equivalent to the original V OA|B , covering the whole Minkowski sum of the two
footprints as shown in Figure 4.4(a). In other words, if we would truncate the
V OA|B with τ = 1 with that circle, still the whole Minkowski sum should be
covered. When we have calculated this circle, we can reuse the implementation
and definitions for circular robots, using the circle’s radius as combined radius
and the circle’s center as relative position.

Starting from the V OA|B , we know that the center (C) of the circle is on
the line in the middle of the V O and that is has to pass through P ∗, which is
the closest point of the Minkowski sum to the origin. Hence, we define:

α =
θleft + θright

2
, β = θrel + θleft + α, c = (cos(β), sin(β)), C = m ∗ c (4.2)

where θleft and θright are defined as in Equation (2.2) and Equation (2.3) re-
spectively and θrel is defined as the angle of the relative position. Then, we
know that:

sin(α) =
r

|C| and |P ∗ − C| = r (4.3)

32

Squaring both expressions and rewriting the first one leads to:

|C|2 ∗ sin2(α) = r2 and |P ∗ − C|2 = r2 (4.4)

We can set both left hand sides equal:

|C|2 ∗ sin2(α) = |P ∗ − C|2 (4.5)

We can further rewrite the terms:

|C| = |m ∗ c| = m ∗ |c| = m (4.6)

and:

|P ∗ − C|2 = (P ∗x −m ∗ cos(β))2 + (P ∗y −m ∗ sin(β))2

= P ∗x
2 − 2 ∗ P ∗x ∗m ∗ cos(β) +m2 ∗ cos2(β)

+ P ∗y
2 − 2 ∗ P ∗y ∗m ∗ sin(β) +m2 ∗ sin2(β)

= P ∗x
2 + P ∗y

2 − 2 ∗m ∗ (P ∗x ∗ cos(β) + P ∗y ∗ sin(β)) (4.7)

+m2 ∗ (cos2(β) + sin2(β))

= P ∗ · P ∗ − 2 ∗m ∗ γ +m2

with:

γ = P ∗x ∗ cos(β) + P ∗y ∗ sin(β) and (cos2(β) + sin2(β)) = 1

Replacing the terms leads to:

m2 ∗ sin2(α) = P ∗ · P ∗ − 2 ∗m ∗ γ +m2

⇒m2 ∗ sin2(α)−m2 + 2 ∗m ∗ γ = P ∗ · P ∗

⇒m2(sin2(α)− 1) + 2 ∗m ∗ γ = P ∗ · P ∗ (4.8)

⇒m2 + 2 ∗m ∗ γ

sin2(α)− 1
=

P ∗ · P ∗
sin2(α)− 1

⇒
(
m+

γ

sin2(α)− 1

)2

=
P ∗ · P ∗

sin2(α)− 1
+

(
γ

sin2(α)− 1

)2

Solving this quadratic equation leads to the following solutions:

m∗1 = − γ

sin2(α)− 1
+

√
P ∗ · P ∗

sin2(α)− 1
+

(
γ

sin2(α)− 1

)2

(4.9)

m∗2 = − γ

sin2(α)− 1
−
√

P ∗ · P ∗
sin2(α)− 1

+

(
γ

sin2(α)− 1

)2

(4.10)

The two solutions that exist are shown in Figure 4.4(b). Circle C2 has the
properties that we are interested in, but the center is closer to the origin and
truncating this VO would lead to a larger over-estimation than using the circle
C1. Thus solution m1 is the preferred one. There are some special cases, where
the Minkowski sum is not completely covered by the calculated VO. This has to
be checked and if a point of the Minkowski sum is outside, this point becomes
the new P ∗ and the calculation is iterated again.

33

vA

vB

FA

FB

vx

vy

vAvB

FB

FA ⊕ FB

Figure 4.5: Using COCALU solves the corridor problem. Since the robots’ foot-
prints and localization uncertainty are approximated with less overestimation,
the robots can pass along the corridor without a problem.

4.6 Complexity

The first part of COCALU (see Algorithm 1) computes the convex hull ac-
cording to the bound ε. One iteration of the convex hull can be computed in
O(n log h) [5], where n is the number of particles and h is the number of points
on the hull (our experiments show h ≤ 50 for 200 ≤ n ≤ 5000 particles). The
worst case (bound reached in the last iteration) results in complete convex hull
peeling, which can be achieved in O(n log n) [6].

The convex hull of the Minkowski sum of two convex polygons (operator ⊕)
can be computed in O(l+ k), where l and k are the number of vertexes (edges).
If the input vertexes lists are in order, the edges are sorted by the angle to the
x-axis and simply merging the lists results in the convex hull.

ORCA runs in O(N) [29] and ClearPath runs in O(N(N +M)), where N is
the number of VOs and M the number of total intersection segments [17]. The
sampling based approach runs in O(N ∗ S), where S is the number of velocities
that are sampled, since we have to check for each sample if it lies within any of
the VOs.

4.7 Summary

In summary, using convex hull peeling for approximating localization uncer-
tainty and convex footprints solves the corridor problem. Comparing Figure 4.1
and 4.5 shows the differences when using CALU and COCALU. In the latter fig-
ure, it is shown that the robots can easily pass each other without even adapting
their path. Furthermore, we introduced a way to reuse the ORCA implemen-
tation for circular shapes by approximated the convex V OA|B by the assuming
that it would have come from two circular robots. Finally, we have shown that
all the calculations are tractable using the complexity analysis.

34

Chapter 5

Static Obstacles

In the previous chapters we have discussed how the robots can avoid each other
in a free-space. However, in a real world setting, more obstacles like walls,
chairs and other objects will be present, too. This chapter will introduce how
obstacles can be detected from a rotating 2D sensor source, e.g. a laser range
finder (also known as LIDAR). Afterwards, it will be explained how data from
a 3D camera can be transformed to be used with the same approach as for the
LIDAR. Finally, we will show how the detected obstacles can be integrated in
the velocity selection methods, i.e. ORCA, ClearPath and the sampling based
approach, used in CALU and COCALU.

5.1 Introduction

Figure 5.1(a) shows a common situation of an autonomous robot in an office
environment. It has a pre-made static map (Figure 5.1(b)), which may or may
not include the obstacles seen on the pictures, e.g. the chairs, table, door, etc.
The laser range finder is used for localization. Since a laser range finder is a
common sensor in robotics, as said before in Section 3.1, we want to use the
data also for static obstacle avoidance.

For any obstacle avoidance, it is necessary to detect the outline of the obsta-
cles, in order to avoid them properly. For ORCA-based methods, the obstacles
can be modeled as a collection of line-segments [29] and for VO-based methods,
the static obstacles can be treated as static robots. In the following, we will
explain in more detail how to detect obstacles with a laser range finder and how
this can be used with the two proposed algorithms, CALU and COCALU.

5.2 Obstacle detection with a laser range finder

We present a simple and efficient algorithm using a laser scan for obstacle line
detection. The algorithm exploits the fact that a laser scan is usually already
sorted by increasing angle. If this is not the case, this can be done efficiently. If

35

(a) Real world situation (b) View in rviz

x

y

(c) Laser scan

x

y

(d) Detected line-segments

Figure 5.1: (a) A real world situation of a robot with a LIDAR and various
obstacles. (b) The same situation seen in the ROS visualization tool rviz, with
the laser scan and detected line-segments. (c) The laser scan plotted in the
frame of the robot. (d) The detected line-segments.

the readings are given in polar coordinates, they can be sorted by the reported
angle right away. If the given readings are in Cartesian coordinate we can use
the 2D cross product to sort the scan. The 2D cross product is defined as
follows:

(r1 −O)× (r2 −O) = (x1 −Ox) ∗ (y2 −Oy)− (x2 −Ox) ∗ (y1 −Oy) (5.1)

where O = (Ox, Oy) is the origin and r1 = (x1, y1) and r2 = (x2, y2) are the two
readings to compare. If the result is positive, then r1 is clockwise from r2, else
it is counter-clockwise. When the result is equal to 0, the vectors point in the
same direction [9].

36

Algorithm 2 Line detection from a laser scan

Input: ri ∈ S: sorted set of laser range readings in Cartesian coordinates
εcc, εccs, εcvx, εcvxs: thresholds for concave and convex
r: robot radius

Output: lines: a set of line-segments defined with start and end vector

i← 0
while i < length(S) do
start← ri, prev ← ri, θs ← 0, θp ← 0
while true do
i← i+ 1
if i > length(S) then

break
end if
next← ri
if ∆(prev − next) > 2 ∗ r then

break
end if
θcurs ← atan(next− start)
if prev == start then
θs ← θcurs

else
if (θcurs − θs < εccs) or (θcurs − θs > εcvxs) or (θcurs − θp < εcc) or
(θcurs − θp > εcvx) then
i← i− 1
break

end if
end if
prev = next, θp ← θcurs

end while
lines← lines ∪ (start, prev)

end while

5.2.1 Line detection

Assuming that we have the sorted list, we will go through the points one by one
and check if the difference between the angle towards the previous point and
the next point exceeds a threshold value or if the difference between the angle
towards the first point and the previous point exceed a threshold. As long as
that is not the case we continue. Otherwise, we define the line-segment as the
first point and the last checked point that fulfilled the requirements and continue
with a new line-segment. Figure 5.1(c) shows a laser scan from the situation
presented in Figure 5.1(a). In Figure 5.1(d) the detected line-segments are
marked. Algorithm 2 shows the implementation of the method.

37

5.2.2 Dealing with a 3D sensor source

As mentioned before, 3D sensors (e.g. the Microsoft Kinect) become more
widely available and are often used in robotics. The advantage of a 3D sensor is
that the field of view is not limited to a certain height, such with the laser scan.
Hence obstacles which are below the height of the laser scan can be detected.
However, a 3D point-cloud coming from such a sensor generates a huge amount
of data. This is not feasible to be processed on-board a mobile robot with a low
power CPU, e.g. a netbook or a sub-notebook with an ultra-low voltage CPU.

To be able to handle such an amount of data, we can first throttle the
scanning speed. For instance a usual 3D sensor runs at 30 Hz, which is not
needed, when the controller runs only at a slower speed. Thus the speed of the
3D sensor can be set to the controller frequency, e.g. 10 Hz. Furthermore, the
point-cloud can be downsampled by a voxel-grid filter as in [22].

As last step, we can project the throttled and downsampled point-cloud to
a 2D plane and generate a fake laser scan out of the data. In order to do
this, we define scanning height, a minimal and maximal viewing angle and the
resolution of the fake laser. Each possible angle for the laser scan is initialized
with a null reading, i.e. the maximum range. For each point in the point-cloud,
we project it to the scanning height plane and check the distance of the projected
point to the sensor. We calculate the closes angle of the laser scan and chose
the corresponding bin. If the current distance is lower than the one currently
saved in the bin, we overwrite it, otherwise we neglect the point. This method
efficiently transforms the point-cloud into a fake laser scan1.

5.3 Static Obstacles with VO-based methods

Static obstacles in VO-based methods can be integrated as if they are static
agents. Figure 5.2(a) shows the construction of a VO for a round robot with
radius rA and an obstacle line-segment defined by Oi and Oj . The construction
follows the same rules as already presented in Section 2.2.

Since static obstacles, by definition, do not move, we have to truncated the
VO by τ , since otherwise the apex of the VO is at the origin of the velocity space,
and the robot is rendered immobile as soon as it is surrounded by obstacles.
Following the same reasoning, we cannot translate the VO, e.g. to create a
RVO or HRVO, since these are based on the assumption that the other robot
takes part in the collision avoidance, which is not the case for static obstacles.

After the V Oτobst is created, it can be approximated by lines, to make com-
patible with the ClearPath formulation. The approximation follows the same
rules as described in Section 2.2.3 and Section 4.3 for circular and convex outline
robots respectively.

1For more information and an implementation, see http://www.ros.org/wiki/

pointcloud_to_laserscan

38

O i

Oj

rA

rA

vx

vy

(a) V Oobst for a robot RA

Oi

τ Oj

τ

rA
τ

rA
τ

vx

vy

(b) V Oτobst

Figure 5.2: (a) Constructing a V O out of a robots’ footprint and an obstacle
line-segment. (b) Truncating the VO by τ .

5.4 Static Obstacles with ORCA

ORCA uses half-planes and linear programming instead of cones to calculate the
new velocity. The computation of the half-planes for other robots is explained
in Section 2.3.1. In this section, we will show two possible ways to deal with
obstacles, when using the ORCA formulation.

5.4.1 Obstacles as points

A straight-forward but inefficient way to deal with the obstacles is to use each
data point of the laser range finder as an obstacle point. For each point we
construct a half-plane perpendicular to the relative position of the robot and
the data point. The distance of the half-plane from the origin is defined by:

dist =
minp∈Fi

(p−O)

τ
(5.2)

where the min expression computes the closest distance from any point of the
robot’s footprint (F) towards the obstacle point (O). This distance is divided
by τ to get a truncation similar as explained in Section 2.2.3.

Figure 5.3(a) shows the resulting velocity space, when we construct a half-
plane for each data point of the laser range finder. This approach has two main
disadvantages:

• For each point an additional line is created. Even though ORCA scales
almost linear with number of additional constraints, this is not efficient.

39

vx

vy

(a) Näıve approach

vx

vy

(b) Using line-segments

Figure 5.3: (a) The näıve approach of dealing with obstacles for ORCA. As-
suming that every point of the laser scan is an obstacle. This leads to as many
additional half-planes as points in the laser scan, e.g. in this case 981. (b) Using
the detected line-segments for the half-plane creation. This vastly reduces the
amount of half-planes introduced by the obstacles, e.g. in this case down to 36.

• The data points can contain noise. Hence, an outlier within the observa-
tions could invalidate the whole velocity space.

5.4.2 Obstacle as line-segments

A second approach is to use the line detection method described in Section 5.2.1.
For each detected line-segment, we construct a half-plane. We have two cases
for this method.

1. The closest distance from the robot’s footprint to the obstacle line-segment
is one of the two obstacle points defining the obstacle line-segment.

2. The closest distance from the robot’s footprint to the obstacle line-segment
is on the line-segment itself.

In the first case, we can create a half-plane treating the closest point of the
obstacle line-segment as a single point and constructing the line as defined in
the previous section. In the second case we construct the half-plane parallel
to the line-segment, i.e. we construct the half-plane using the point on the
obstacle line-segment that is closest to the robot’s footprint. For circular robots
this point is the projection of the origin on the line-segment. Figure 5.3(b)
shows the resulting half planes, depicted as lines. In this example, the number
of additional constraints was decreased by more than 95%, when compared to
the näıve approach.

40

5.5 Summary

To conclude, we have shown how a laser range finder can be used for obstacle
detection. We exploit the fact that the laser readings are usually ordered with
increasing angle, and have also shown how to efficiently order the readings, when
this is not the case. A simple but efficient line detection algorithm is explained
and how a 3D sensor source can be used to emulate a fake laser.

We have introduced static obstacles for VO-based methods, i.e. ClearPath
and sampling based, and ORCA. For the first methods, the implementation of
static obstacles is straight forward, since it is basically a not moving agent. For
ORCA, we can use each point as an obstacle or use the line detection algo-
rithm. By using the latter one, the number of additional lines can be decreased
immensely.

41

Chapter 6

Evaluation of the methods

This chapter presents experiments and results of the system proposed in the
previous chapters. We refine the research goals posed in Section 1.2 and present
a common scenario which is used for the evaluation. In the following, we intro-
duce four performance measures and show and discuss the results of the research
goals. We begin with parameter tuning in order to determine the best settings
for the presented algorithms. Afterwards, the algorithms are tested with various
numbers of different robots in simulation and real life. Lastly, we investigate
more complex real world scenarios including static and dynamic obstacles. The
chapter closes with a short summary.1

6.1 Introduction

We have evaluated our approach in simulation using Stage [15, 32] and in real-
world settings. Simulation allows us to investigate the system performance using
many repetition and various extreme settings. For evaluation we have chosen
several different scenarios, using up to eight robots and different shapes (e.g.
circular and rectangular robots).

Based on the problem definition (see Section 1.2), we investigate the follow-
ing questions.

1. What is the correct epsilon ε for the error-bound of the localization un-
certainty?

2. Which VO type (VO, HRVO, RVO) performs best?

3. How do the methods compare when using different shapes and numbers
of differential drive or holonomic robots?

1The pictures in the topright and topleft corner of each page are a flipbook of a simulation
run with six and eight robots and ground truth. It is best viewed when printed double-sided
or on screen, when the viewer is set to a two page layout.

43

4. How well do the methods perform in the presence of uncontrolled robots,
i.e. dynamic and static obstacles?

The first two questions can be considered as parameter tuning for the proposed
algorithms. With the third question we examine which combination of CALU
or COCALU with the three velocity selection methods presented in Section 2.3
performs best for different kinds of robots. With the last question, we explore
the actual real-life performance for different scenarios with static obstacles and
dynamic obstacles. The dynamic obstacles are uncontrolled robots that do not
take the movement of other robots into account.

6.1.1 System

All experiments in simulation are run on a single machine with a quad core
2.6 GHz Intel i7 processor and 6 GB of memory. Each setting is repeated
50 times and the results are averaged. Runs in which collisions occurred or
which exceeded a time limit of 60 seconds are excluded from the averages. The
completed runs are split into seven bins, and the variance of the batch means
is used to calculate 90% confidence intervals using the students t-distribution
with six degrees of freedom and α = 0.1. The simulation are run in real time,
since the message passing is an essential component of the described approach.
ROS message passing uses real time serialization and deserialization, therefore
increasing the simulation speed would lead to inaccurate results.

In the real-word setting, we have investigated the performance of CALU
and COCALU using up to four differential drive turtlebots2. The robots are
based on the iRobot’s Roomba platform and have a diameter of 33.5 cm. In
addition to the usual sensors, they are equipped with a Hokuyo URG laser-
range finder to enable better localization in large spaces. All computation is
performed on-board on a Intel i3 380UM 1.3 GHz dual core CPU notebook.
Communication between the robots is realized via a 2.4 GHz WiFi link using
a TCP/IP connection using a ROS topic shared between the different robots.
Before the start the robots are driven remotely to their initial positions and
AMCL is initialized with an approximated initial guess.

6.1.2 Common scenario

A common scenario for simulation and real life are a different number of robots
located on a circle (equally spaced). The goals are located on the antipodal
positions, i.e. each robot’s shortest path is through the center of the circle
(see [29, 1]). We use a circle with a radius of 1.7 meter in simulation and a
radius of 1.4 meter in real life. The goal is assumed to be reached when the
robots center is within a 0.15 meter radius of the true goal. As soon as a robot
reaches its goal, it stops moving, i.e. it does not avoid other robots anymore or
moves out of the way.

2For more information see: http://turtlebot.com.

44

Figure 6.1: Static map used in all experiments for AMCL’s laser scan matcher
in simulation and real life. In the simulator stage, a world corresponding to
the map was created. The robots initial positions and goals for the common
scenario are located on the circle.

Figure 6.1 shows a sample configuration with eight robots. The map shows
walls and static obstacles in our robotics laboratory. The map is created using
gmapping3 (for technical details see [16]) with a laser range finder mounted on
top of one of the robots used for the real world experiments. For the simulator
Stage, a world corresponding to the map was created.

The scenario can be tested with two different settings in simulation:

• Ground Truth (GT): Each robot gets perfect position and velocity infor-
mation through the simulation environment.

• AMCL: Each robot starts its own AMCL initialized with the exact pose
corrupted by gaussian noise in x and y direction with σ = 0.15m. The
AMCL particle cloud is then initialized around the given pose with a
variance of σ2 = 0.15 in x and y direction and with σ2 = 0.04 in angular
direction.

The robots used in simulation match the turtlebots used in the real world
experiments. Thus we simulate a round differential drive robot with a radius of
0.17 meters for the simulation experiments. As a sensor source, a laser range
finder is simulated, where the readings are corrupted with 5% gaussian noise.
The exact settings and the deviations from the above are mentioned in the
description for each experiments.

6.1.3 Performance measures

We measure several performance measures: a) number of collisions, b) time to
complete a single run, c) distance travelled and d) jerk cost. The jerk cost

3For more information see: http://www.ros.org/wiki/gmapping

45

measures the smoothness of a path and is defined as:

Jerklin =
1

2

∫
...
x(t) dt (6.1)

Jerkang =
1

2

∫
...
θ (t) dt (6.2)

where x is the forward displacement of the robot, i.e. the linear speed is ẋ and
θ the robot’s heading, i.e. θ̇ is the angular speed.

6.2 Parameter tuning

In this section, we investigate on the best parameters for the error-bound for
the localization uncertainty (ε). The area of the approximation of the local-
ization uncertainty for and the performance for the common scenario will be
evaluated for various values of the error-bound ε. Additionally, we compare
the performance of the different VO types for ClearPath and sampling based
velocity selection.

6.2.1 Choosing the right error-bound for the localization
uncertainty

As a first test, we compare the area of particles covered by CALU and COCALU
for various values of ε. More specifically, we use the same AMCL particle cloud
to calculate the CALU error distance (dS∗) as defined in Equation (3.9) for
various error-bounds ε ∈ [0, 1.0]. For COCALU, we use the convex-hull peeling
method until we hit our error-bound as described in Section 4.4. The area
defined by the resulting convex hull is calculated and compared to the area of
the CALU circle. The AMCL point clouds are generated by a robot driving
ten times up and down, driving straight for four meters and then turning 180
degrees and returning to the starting place. This is done once in simulation and
once in real-life. The sizes are calculated at each controller step, thus with 10
Hz. The results for each epsilon are averaged.

Secondly, we compare the average localization error (defined as the difference
between the estimated pose and the ground truth pose) in simulation to the
average distance of the points of COCALU convex hull to the CALU error
distance (dS∗). We test this once with no sensor noise and once with 5% gaussian
noise added to the sensor values. Again a robot is driving ten times up and down
the simulated lab. We use the batch means method with 10 bins to calculate a
95% confidence interval for the average distances for CALU and COCALU.

As a third evaluation, we use the scenario defined in Section 6.1.2 with eight
round differential drive robots in simulation. The laser scan is disrupted by 5%
gaussian noise. The error-bound is varied from 0.0 to 1.0 increased in steps of
0.1. Each velocity selection method is evaluated 50 times and the results are
averaged for CALU and COCALU respectively.

46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ε

A
re
a
o
f
p
a
rt
ic
le
s

co
v
er
ed

[m
2
]

CALU

COCALU

(a) Simulation run

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ε

A
re
a
o
f
p
a
rt
ic
le
s

co
v
er
ed

[m
2
]

CALU

COCALU

(b) Real life

Figure 6.2: Comparing the effect on the area of particles covered for different
error-bounds (ε) in CALU and COCALU. (a) Resulting area covered in simu-
lation. (b) Resulting area covered using a real robot.

Results and Discussion

Figure 6.2 shows the effect of ε on the area of particles covered. We can see
that the general trend is the same for simulation (Figure 6.2(a)) and real life
(Figure 6.2(b)). COCALU generally covers a smaller area than CALU, which
is to be expected. There can be cases in which COCALU generates a larger
area than CALU, i.e. when there are various points with a high weight that are
far away form the current position estimate. These points are included in the
convex hull, as otherwise the weighted sum drops below the limit. In CALU
the points may be excluded, since the particles closer to the current position
estimate are taken first. However, as can be seen from the results this rarely
happens.

From this result we can see, that error bound is necessary. Especially in real
life with more uncertainties, the increase area of particles covered by CALU and
COCALU is above 1m2 and 0.6m2 respectively. Thus, the error bound ensures
that the virtual size of the robot is not increased so much that it is rendered
immobile.

Figure 6.3 compares the localization error to the average distance to the
outline of the calculated approximation of the localization uncertainty. We can
see that the distance for CALU is slightly smaller on average starting from
ε = 0.2. As expected, with no sensor noise the mean localization error and the
standard deviation are very small with µ = 0.064 m and σ = 0.038 m. This
increases to µ = 0.121 m and σ = 0.124 m, when disrupting the sensor with 5%
gaussian noise.

The mean localization error is well below the confidence intervals of the
average distance for ε ≤ 0.5 with no noise and for ε ≤ 0.3 with noise. When
comparing only the means, we can see that for ε ≤ 0.7 the mean average distance
is higher than the localization error. With noise this decreases to ε ≤ 0.5.

47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

µ − 1 ∗ σ

µ = 0.064
σ = 0.038

µ + 1 ∗ σ

µ + 2 ∗ σ

µ + 3 ∗ σ

µ + 4 ∗ σ

µ + 5 ∗ σ

µ + 6 ∗ σ

µ + 7 ∗ σ

µ + 8 ∗ σ

ε

A
v
e
ra
g
e
d
is
ta
n
ce

in
[m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
o
ca

li
za

ti
o
n
e
rr
o
r
in

[m
]CALU

COCALU

(a) Simulation run, no sensor noise

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

µ − 1 ∗ σ

µ = 0.121
σ = 0.124

µ + 1 ∗ σ

µ + 2 ∗ σ

ε

A
v
er
a
g
e
d
is
ta
n
ce

in
[m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
o
ca

li
za

ti
o
n
er
ro
r
in

[m
]CALU

COCALU

(b) Simulation run, sensor disrupted with 5% gaussian noise

Figure 6.3: Comparing the localization error in simulation with the average
distance of the particle cloud covered for CALU and COCALU. For CALU this
is the calculated radius and for COCALU we take the average distance from all
points of the convex hull to the estimated pose. The plots are slightly offset
to enhance comparability. The boxes define the 95% confidence interval for the
mean and the bars show the standard deviation. (a) Results with no sensor
noise. (b) Results for with the sensor data disrupted by 5% gaussian noise.

Thus, we expect that for ε� 0.5 many collision will occur, since the estimated
localization uncertainty will not cover the actual localization error anymore.

The higher average distance for COCALU when compared to CALU for
ε > 0.1 is due to the different approximation approaches. CALU adds particles
with increasing distance, and as soon as the error bound is reached, the particle
which is furthest away defines the radius of the approximation. COCALU re-
moves convex hulls from the particle cloud by the peeling method. As soon as
the boundary is reached, the current convex hull defines the area of the approx-
imation. This can include points that are further away than the points included
in CALU, and therefore it has a higher average distance, even though the total
area covered is smaller for COCALU as seen in the previous experiment. With
ε = 0 all particles are included in both approaches. Hence, COCALU has a
lower average distance, since the convex approximation of the cloud is always

48

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

ε

R
u
n
s
w
it
h

c
o
ll
is
io
n
s
[%

]

CALU

COCALU

(a) Runs with collisions in %

0 0.1 0.2 0.3 0.4 0.5
10

15

20

25

30

35

40

ε

T
im

e
[s
]

CALU

COCALU

(b) Time in s

0 0.1 0.2 0.3 0.4 0.5

400

600

800

1000

1200

1400

1600

ε

L
in
ea

r
J
er
k

CALU

COCALU

(c) Linear Jerk in m
s3

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16
x 10

4

ε

A
n
g
u
la
r
J
er
k

CALU

COCALU

(d) Angular Jerk in rad
s3

Figure 6.4: Comparing different error-bounds (ε) for CALU and COCALU.
The plots are slightly offset to enhance comparability. The boxes define the
90% confidence interval for the mean and the bars show the standard deviation.
(a) Runs in which collisions occurred. (b) Average time needed to complete the
run. (c) Linear Jerk. (d) Angular Jerk.

smaller than the circumscribed radius.

The results for the scenario with eight robots aligned on a circle are shown
in Figure 6.4. When looking at the percentage of runs in which a collision
occurred (Figure 6.4(a)), we can see that starting from ε ≥ 0.4 many collisions
occur. For ε ≥ 0.6 in all runs for CALU and more than half for COCALU
occurred collisions, thus for the further evaluation only runs from ε ∈ [0, 0.5]
were included.

When comparing the time needed (Figure 6.4(b)), it can be seen that the
runtime decreases wit h an increase in the error-bound. CALU generally needs
more time than the COCALU methods, though that is not always statistically
significant. A similar trend can be seen when comparing the linear and angular
jerk in Figure 6.4(c) and Figure 6.4(d) respectively.

Generally speaking, the standard deviation for the COCALU runs decreases

49

for ε ≤ 0.3 and then increases again. For CALU it decreases until the last ε
compared.

The observed results are expected due to the following; a larger ε leads
to a smaller area of particles covered, thus also a smaller virtual footprint of
the robots. This leaves more space to maneuver and hence the shorter times
and smaller jerk costs. However, for ε ≥ 0.4 a significant increase of collisions
occurred. This is illustrated in Figure 6.3(b). The mean localization error is
well below the average distance for ε ≤ 0.4. This means that the areas before
that value covers enough of the localization uncertainty to stay clear of the other
robots. With ε � 0.4 the localization uncertainty is not covered enough, and
thus the collisions will occur.

To summarize, we propose to use an error-bound ε ∈ [0.2, 0.4] for this setup.
However, for other robots in other domains the experiments have to be executed
again to ensure the correct values. For the remainder of the experiments, we
set ε = 0.3.

6.2.2 Comparing the different VO types

In Chapter 2, we have introduced three types of velocity obstacles - VO, RVO
and HRVO. To evaluate these, we have chosen the common scenario defined
in Section 6.1.2 with eight round differential drive robots in simulation. Each
scenario is run 50 times, once with ground truth and once with AMCL. For
AMCL runs, the laser scan is disrupted by 5% gaussian noise. The error-bound
ε is set to 0.3 as explained in the previous section. We compare CALU and
COCALU with the two velocity selection methods ClearPath and the sampling
based approach, since ORCA is only defined for VOs.

As terminology we introduce COCALUS , COCALUCP and COCALUORCA
for the three velocity selection methods, sampling based, ClearPath and ORCA,
for COCALU respectively. The same naming convention is used for CALU. We
will focus on the results for the runs running with AMCL, since these correspond
to a real-world setting.

Results and Discussion

Figure 6.5 shows the results for using AMCL (for ground truth results, see
appendix Figure A.1). The order from VO, to HRVO to RVO is chosen, since
when revisiting Section 2.2, VO is the most restrictive, followed by HRVO and
RVO is the least restrictive when comparing the area covered in velocity space.
The number of runs with collisions are not shown, since in the AMCL runs
only in the setting with HRVO and COCALUS a single collision occurred. The
results for ground truth are generally faster and lower in distance and jerk (for
better comparison, they are plotted in the same scale), but show similar trends
as the AMCL results.

Looking at Figure 6.5(a) we observe that for COCALUCP the time needed
rises with for RVO and VO when compared to HRVO; with CALUCP the times
for HRVO and VO are similar but RVO is performing the worst. The sampling

50

VO HRVO RVO

12

14

16

18

20

22

24

26

28

30

32

Type VO

T
im

e
[s
]

CALUCP

CALUS

COCALUCP

COCALUS

(a) Time in s

VO HRVO RVO

3.5

4

4.5

5

5.5

Type VO

D
is
ta

n
ce

tr
a
v
el
le
d
[m

]

CALUCP

CALUS

COCALUCP

COCALUS

(b) Distance in m

VO HRVO RVO

500

1000

1500

2000

2500

3000

3500

4000

Type VO

L
in
ea

r
J
er
k

CALUCP

CALUS

COCALUCP

COCALUS

(c) Linear Jerk in m
s3

VO HRVO RVO
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

Type VO

A
n
g
u
la
r
J
er
k

CALUCP

CALUS

COCALUCP

COCALUS

(d) Angular Jerk in rad
s3

Figure 6.5: Comparing the different VO types for CALU and COCALU with
AMCL. The plots are slightly offset to enhance comparability. The boxes define
the 90% confidence interval for the mean and the bars show the standard de-
viation. (a) Average time needed to complete the run. (b) Distance travelled.
(c) Linear jerk. (d) Angular jerk.

based approach is almost stable with a slight tendency that the VO is performing
best. When comparing the distances travelled shown in Figure 6.5(b), similar
trends can be detected, but for the sampling approach the tendency that VO is
performing best is more visible.

When comparing the linear and angular jerk costs in Figure 6.5(c) and Fig-
ure 6.5(c) respectively, we can see that the paths are less smooth when using
VOs together with ClearPath when comparing to RVOs and HRVOs. This is
visible for CALUCP and as well for COCALUCP . Using the sampling based
approach the trends are different. For the linear jerk, HRVO shows the largest
costs and RVO and VO perform similarly, while COCALUS with RVO is per-

51

forming best. For the angular jerk, the trend for CALUS is the same as for
the linear jerk, but when using COCALUS with HRVO uses the lowest angular
jerk, but with a high standard deviation.

It may seem surprising at first that the results differ so much for ClearPath
and the sampling based approach. When revisiting the definitions of ClearPath
and the sampling based approach, we see that ClearPath solves for the opti-
mal new velocity, assuming that all the other robots do the same. Hence, we
can speak of reciprocal collision avoidance. Therefore, with ClearPath, HRVO
outperforms RVO and VO. RVO performs worse than HRVO due to the higher
risk of oscillations coming from a symmetric setup. Hence, we can detect a “V”
shaped trend, when looking at the runs with ClearPath. This is most visible in
the angular jerk. However, when using the sampling based approach, we might
not take the optimal new velocity, but a close to optimal collision free velocity.
This might be diverted to any direction, hence the assumptions for the RVO and
the HRVO do not hold anymore. Therefore, it is best to assume that the other
agent is merely a dynamic obstacle, instead of an agent that takes responsibility
in part of the collision avoidance.

To sum up, we propose to use the standard velocity obstacle (VO) for the
sampling based approaches and the hybrid reciprocal velocity obstacle (HRVO)
for ClearPath.

For the remainder of the experiments, we use ClearPath with HRVOs and
the sampling based approach with VOs.

6.3 Comparison of different numbers and types
of robots

In this section we will extensively examine the common scenario presented in
Section 6.1.2. We will use two to eight simulated turtlebots, i.e. differential
drive, round robots, and assessing all the combinations of the velocity selection
methods with CALU and COCALU. Each setting will be run 50 times for ground
truth and AMCL. During the AMCL runs, the sensor data is disrupted by 5%
gaussian noise. The error-bound ε is set to 0.3, and the velocity obstacle type
used for the runs with ClearPath is the HRVO and for the sampling based
approach it is the standard VO, as explained and evaluated in the previous
sections. This leads to twelve different settings, i.e. three COCALU settings,
three CALU settings and each tested with ground truth and AMCL.

As a second type of robot we introduce rectangular shaped robots with
holonomic drive. The width and length of the robots are 0.40 meters by 0.60 m
respectively. The same twelve settings will be evaluated for this type of robots.
The angular speed for the robots is defined such that the robots will preferably
look into the direction in which they are driving. This is chosen, since the sensor
source is usually located in front, thus we want to prevent driving sideways or
backwards, since we have less sensor data in these directions. However, the
turning is only allowed when the distance to the closest robot or obstacle is

52

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]
Figure 6.6: The smoothest robot trajectories observed with different numbers
of circular robots using COCALUCP and ground truth. In the first row the
results for 3, 4 and 5 robots are shown and in the second row, 6, 7 and 8 robots
from left to right are presented.

large enough such that the turning will be collision free.

Real world experiments are performed with four turtlebots. Only the six
settings using AMCL can be tested, since no external positioning method, e.g.
a motion capturing system or an overhead camera, is available. Thus, we have to
rely on the poses determined by the robots’ AMCL. Furthermore, the real world
runs take much more time and have to be supervised at all times. Therefore,
these runs are only repeated ten times, to get an indication of the performance.

As a second real world setting, we used carton boxes to alter the shape of the
turtlebots. The boxes are square with a length of 0.42 m for each side. Thus the
six settings were also tested on quadratic shaped, differential drive turtlebots.

In Section 6.2.2 we introduced the notion of COCALUCP for the various
combinations of CALU and COCALU with the three velocity selection methods.
Additionally, we will use COCALUGTCP and COCALUAMCL

CP to define when
using ground truth (GT) and AMCL.

6.3.1 Results and discussion for round differential drive
robots

Figure 6.6 shows smooth trajectories for three to eight robots. These are ob-
tained by using ground truth positioning and COCALUCP . When examining

53

4 5 6 7 8
5

10

15

20

25

30

Robots

T
im

e
[s
]

CALU AMCL
ORCA

CALU GT
ORCA

COCALU AMCL
ORCA

COCALU GT
ORCA

(a) Time in s, ORCA

4 5 6 7 8
5

10

15

20

25

30

Robots

T
im

e
[s
]

CALU AMCL
CP

CALU GT
CP

COCALU AMCL
CP

COCALU GT
CP

(b) Time in s, CP

4 5 6 7 8
5

10

15

20

25

30

Robots

T
im

e
[s
]

CALU AMCL
S

CALU GT
S

COCALU AMCL
S

COCALU GT
S

(c) Time in s, S

4 5 6 7 8
3

3.5

4

4.5

5

5.5

Robots

D
is
ta
n
c
e
tr
a
v
e
ll
e
d
[m

]

CALU AMCL
ORCA

CALU GT
ORCA

COCALU AMCL
ORCA

COCALU GT
ORCA

(d) Distance in m, ORCA

4 5 6 7 8
3

3.5

4

4.5

5

5.5

Robots

D
is
ta
n
c
e
tr
a
v
e
ll
e
d
[m

]

CALU AMCL
CP

CALU GT
CP

COCALU AMCL
CP

COCALU GT
CP

(e) Distance in m, CP

4 5 6 7 8
3

3.5

4

4.5

5

5.5

Robots

D
is
ta
n
c
e
tr
a
v
e
ll
e
d
[m

]

CALU AMCL
S

CALU GT
S

COCALU AMCL
S

COCALU GT
S

(f) Distance in m, S

Figure 6.7: Comparing the time and distance with different number of round
robots for CALU and COCALU. The plots are slightly offset to enhance com-
parability. The boxes define the 90% confidence interval for the mean and the
bars show the standard deviation. The first row compares the time needed with
CALU and COCALU combined with the three velocity selection methods and
second row compares the distance traveled.

the trajectories, it can be seen that the robots during the smoothest trajecto-
ries are forming a spiral to get to the other side of the circle. This behavior is
not pre-programmed and emerges using the proposed algorithms. However, this
only occurs, when all the robots located exactly symmetric and start almost at
the same time. Even when using ground truth this is not always the case, since

54

4 5 6 7 8
0

500

1000

1500

2000

2500

3000

Robots

L
in

e
a
r
J
e
rk

CALU AMCL
ORCA

CALU GT
ORCA

COCALU AMCL
ORCA

COCALU GT
ORCA

(a) Linear Jerk in m
s3

, ORCA

4 5 6 7 8
0

500

1000

1500

2000

2500

3000

Robots

L
in

e
a
r
J
e
rk

CALU AMCL
CP

CALU GT
CP

COCALU AMCL
CP

COCALU GT
CP

(b) Linear Jerk in m
s3

, CP

4 5 6 7 8
0

500

1000

1500

2000

2500

3000

Robots

L
in

e
a
r
J
e
rk

CALU AMCL
S

CALU GT
S

COCALU AMCL
S

COCALU GT
S

(c) Linear Jerk in m
s3

, S

4 5 6 7 8
0

2

4

6

8

10

12
x 10

4

Robots

A
n
g
u
la
r
J
er
k

CALU AMCL
ORCA

CALU GT
ORCA

COCALU AMCL
ORCA

COCALU GT
ORCA

(d) Angular Jerk in rad
s3

,
ORCA

4 5 6 7 8
0

2

4

6

8

10

12
x 10

4

Robots

A
n
g
u
la
r
J
er
k

CALU AMCL
CP

CALU GT
CP

COCALU AMCL
CP

COCALU GT
CP

(e) Angular Jerk in rad
s3

, CP

4 5 6 7 8
0

2

4

6

8

10

12
x 10

4

Robots

A
n
g
u
la
r
J
er
k

CALU AMCL
S

CALU GT
S

COCALU AMCL
S

COCALU GT
S

(f) Angular Jerk in rad
s3

, S

Figure 6.8: Comparing the jerk with different number of round robots for CALU
and COCALU. The plots are slightly offset to enhance comparability. The boxes
define the 90% confidence interval for the mean and the bars show the standard
deviation. The first row compares the linear jerk with CALU and COCALU
combined with the three velocity selection methods and second row compares
the angular jerk.

the message passing can lead to delays in communication.4

Only when using the sampling based approach with CALU and COCALU a
single run had collisions, when using seven and eight robots. All runs without
collisions were completed within the time limit of 60 seconds.

4The flipbook in the topright shows the run for six robots. On the top left, the run with
8 robots is presented. Both runs are with COCALUCP and ground truth.

55

To compare the performance of the six presented settings in ground truth and
AMCL, Figure 6.7 and Figure 6.8 exhibit the run time, distance travelled and the
jerk costs for all of the settings. Each row compares one performance measure
for the three velocity selection methods, ORCA, ClearPath and sampling based
from left to right. Each plot shows the results for using COCALU or CALU
with AMCL or ground truth. The results for two and three robots are not
shown, since for each setting, the results where not statistically different, hence
they do not add value for the comparison.

When comparing the time needed using ORCA (Figure 6.7(a)), it can be
seen that CALU and COCALU almost perform equally well. There is no sta-
tistically significant difference between the two approaches. However, when
looking at ClearPath and the sampling based approach in Figure 6.7(b) and
Figure 6.7(c) respectively, it can be seen that COCALU generally performs bet-
ter that CALU. The method using the least time is COCALUCP , especially
when looking at higher numbers of robots. Sampling works well for a lower
number of robots, i.e. up to five robots, but after that the increase is very high.
When comparing the distance travelled, similar trends can be seen for ORCA
and the sampling based approach (Figure 6.7(d) and Figure 6.7(f)). However
with ClearPath (Figure 6.7(e)), it is interesting that when using AMCL, the dis-
tance for CALU and COCALU are almost equal, even though COCALU takes
less time to complete the run.

Looking at the results for the linear jerk using ORCA presented in Fig-
ure 6.8(a), we can see that all four methods are very close. Comparing it to
using ClearPath (Figure 6.8(b)), we can see that CALU performs better using
ORCA, while COCALU with AMCL performs best with ClearPath. Peculiar is
the large variance when using four and five robots for COCALUCP .

This is probably a simulation artifact, since there is not high variance for the
time and distance. It could be the case that through the message passing delays
and due to the fact that Stage does not take dynamic constraints into account,
that the ground truth velocity jumps back and forth, from the maximum velocity
to a smaller one. With six robots, the workspace is cluttered so much that the
robots cannot drive at full speed at all, hence there are less jumps in the velocity.

Figure 6.8(c) shows the results for the sampling based approach. Overall,
we can see that while COCALU generally outperforms CALU, the overall per-
formance when comparing to ORCA and ClearPath is almost equal for four and
five robots. For more than five robots, the sampling based approach generally
outperforms by the other two approaches.

Very important for a smooth trajectory is the angular jerk, since changing
the direction often, will lead to an increased angular jerk costs. Thus when
comparing the three plots for ORCA, CP and sampling based, (Figure 6.8(d),
Figure 6.8(e) and Figure 6.8(f)), we can see that ORCA performs best overall.
CALU using ClearPath has a higher angular jerk cost than COCALUCP , which
explains the peculiarity which was observed before with CALU and COCALU
using ClearPath, when comparing the times and distances travelled. While both
travel roughly the same distances, COCALU requires less time to complete the
runs. Hence, CALUCP uses more time maneuvering in place, which can be seen

56

of robots 3 4 5 6 7 8
CALUORCA 0 0 0 0 0 0

COCALUORCA 0 0 0 0 0 1 (1)
CALUCP 0 0 0 0 0 0

COCALUCP 0 0 0 0 0 5 (2)
CALUS 0 0 0 0 0 2 (1)

COCALUS 0 0 0 0 3 (2) 11 (4)

Table 6.1: The number of collisions occurred during the simulation runs with
rectangular robots and AMCL. The number in brackets denotes the number of
runs in which the collisions occurred.

of robots 3 4 5 6 7 8
CALUORCA 0 0 0 3 3 14

COCALUORCA 0 1 0 2 3 4
CALUCP 0 0 0 3 8 14

COCALUCP 0 0 0 0 2 2
CALUS 0 0 0 7 21 26

COCALUS 0 0 0 0 7 6

Table 6.2: The number of runs exceeding the time limit of 60 seconds during the
simulation runs with rectangular robots and AMCL. The runs with collisions
were already excluded from the runs.

from the angular jerk costs.
The sampling based approach has comparably low jerk costs for four and

five robots, however afterwards, it increases rapidly. This trend can be ob-
served in all performance measures. It is probably caused by the more cluttered
environments. When there is enough space, there is a high probability that
the preferred velocity or a sample close to it is outside of all velocity obstacles.
Additionally, it is not optimally close, i.e. there is some additional safety area.
However, in more cluttered environments, this is not the case anymore; then
it might be that actually no sample is outside all velocity obstacles, and thus
a velocity is chosen, which might lead to a collision at some point. In these
cluttered environments, it is better to actually calculate the optimal velocity,
instead of using the sampling based approach.

In summary, we conclude that with round robots, COCALUCP works best,
while the best velocity selection method for CALU is ORCA. The sampling
based approach works really well for up to five robots, but after that perfor-
mance drops rapidly. Sample trajectories for the runs with COCALUCP and
CALUORCA can be found in the appendix Figure A.2.

6.3.2 Results and discussion for convex holonomic robots

When testing the algorithms with more complex shapes, i.e. rectangular holo-
nomic robots, slightly more collisions occurred. The results are presented in

57

Table 6.1. It can be seen that CALU had less collisions than COCALU. This is
due to the overestimation of the of the rectangular shape by the circumscribed
radius. However, when looking at the runs that exceeded the time limit shown
in Table 6.2, we can see that for CALU a lot more runs were not completed
within 60 seconds, especially for seven and eight robots. These runs are usually
a situation in which one or more robots are trapped in the center of the circle
of robots that already reached their goal positions or when a robot is trapped
between the wall and the other robots. Since CALU overestimates the localiza-
tion uncertainty and the robots’ footprints, this happens more often than with
COCALU.

To further compare the performances of the proposed methods, Figure 6.9
compares the time and distance, and Figure 6.10 compares the jerk costs. When
comparing the times to the previous runs with round robots, we can see that
the averages are much higher for the rectangular robots. This also holds for the
distances travelled and the jerk costs.

When considering the differences in time between the different velocity se-
lection methods with CALU and COCALU, we can see that while for ORCA
(Figure 6.9(a)) the time monotonously increases, with COCALUAMCL

CP there
are two outliers, with five and with seven robots. For COCALUS it is inter-
esting that the time increases also until seven robots and then for eight robots
suddenly the time decreases again. In general, COCALU performs better than
CALU. This is however not always statistically significant.

Comparing the distances traveled, we can see from Figure 6.9(d) that al-
though COCALUAMCL

ORCA uses less time than CALUAMCL
ORCA , the distance travelled

using COCALUAMCL
ORCA is generally longer. In Figure 6.9(e), showing the the dis-

tance using ClearPath, we cannot see the outliers for five and seven robots for
COCALUAMCL

CP . Also for the sampling based approach, the drop in average
time after seven robots cannot be detected in Figure 6.9(f).

Figure 6.10(a) and Figure 6.10(d) show the results for linear and angular jerk
for CALUORCA and COCALUORCA. Here we can see that COCALUAMCL

ORCA

uses significantly more linear jerk than CALUAMCL
ORCA for most numbers of robots.

That is probably also the reason for the longer path lengths detected before. The
angular jerk for COCALUAMCL

ORCA and CALUAMCL
ORCA is quite low when compared

to the other methods.
As already concluded with round robots CALUCP with AMCL does not

work well, which can also be seen from Figure 6.10(b) and Figure 6.10(e).
In both cases CALUCP performs significantly worse than the corresponding
COCALUCP runs. The angular jerk for seven robots and COCALUAMCL

CP is
above the trend and has a larger standard deviation than the runs with the
other numbers of robots. This might explain the outlier for seven robots. For
five robots, there is an indication that the standard deviation and mean are a
bit higher as well, but this is not as visible as for seven robots.

There is again a peculiarity with four and five robots, when looking at the
angular and especially the linear jerk with COCALUGTAMCL. The linear jerk for
four and five robots is much higher then we would expect. This can be again
explained by simulation artifacts as explained in the previous section.

58

4 5 6 7 8
10

15

20

25

30

35

40

45

50

55

Robots

T
im

e
[s
]

CALU AMCL
ORCA

CALU GT
ORCA

COCALU AMCL
ORCA

COCALU GT
ORCA

(a) Time in s, ORCA

4 5 6 7 8
10

15

20

25

30

35

40

45

50

55

Robots

T
im

e
[s
]

CALU AMCL
CP

CALU GT
CP

COCALU AMCL
CP

COCALU GT
CP

(b) Time in s, CP

4 5 6 7 8
10

15

20

25

30

35

40

45

50

55

Robots

T
im

e
[s
]

CALU AMCL
S

CALU GT
S

COCALU AMCL
S

COCALU GT
S

(c) Time in s, S

4 5 6 7 8
3.5

4

4.5

5

5.5

6

6.5

Robots

D
is
ta
n
c
e
tr
a
v
e
ll
e
d
[m

]

CALU AMCL
ORCA

CALU GT
ORCA

COCALU AMCL
ORCA

COCALU GT
ORCA

(d) Distance in m, ORCA

4 5 6 7 8
3.5

4

4.5

5

5.5

6

6.5

Robots

D
is
ta
n
c
e
tr
a
v
e
ll
e
d
[m

]

CALU AMCL
CP

CALU GT
CP

COCALU AMCL
CP

COCALU GT
CP

(e) Distance in m, CP

4 5 6 7 8
3.5

4

4.5

5

5.5

6

6.5

Robots

D
is
ta
n
c
e
tr
a
v
e
ll
e
d
[m

]

CALU AMCL
S

CALU GT
S

COCALU AMCL
S

COCALU GT
S

(f) Distance in m, S

Figure 6.9: Comparing the time and distance with different number of rectan-
gular robots for CALU and COCALU. The plots are slightly offset to enhance
comparability. The boxes define the 90% confidence interval for the mean and
the bars show the standard deviation. The first row compares the time needed
with CALU and COCALU combined with the three velocity selection methods
and second row compares the distance traveled.

The outliers with five and seven robots might be explained by the asymmetric
setup when using an uneven number of robots. In these cases there is no head
on collision from the start, thus the avoidance only occurs later. With three
robots there is enough space, thus this is not much of a problem, but with five
and especially with seven robots, we can seen that it takes much more effort.

When looking at the results for the sampling based approach, presented
in Figure 6.10(c) and Figure 6.10(f), we can also see that CALUS also does

59

4 5 6 7 8

200

400

600

800

1000

1200

Robots

L
in

e
a
r
J
e
rk

CALU AMCL
ORCA

CALU GT
ORCA

COCALU AMCL
ORCA

COCALU GT
ORCA

(a) Linear Jerk in m
s3

, ORCA

4 5 6 7 8

200

400

600

800

1000

1200

Robots

L
in

e
a
r
J
e
rk

CALU AMCL
CP

CALU GT
CP

COCALU AMCL
CP

COCALU GT
CP

(b) Linear Jerk in m
s3

, CP

4 5 6 7 8

200

400

600

800

1000

1200

Robots

L
in

e
a
r
J
e
rk

CALU AMCL
S

CALU GT
S

COCALU AMCL
S

COCALU GT
S

(c) Linear Jerk in m
s3

, S

4 5 6 7 8
0

1

2

3

4

5

6

7

8
x 10

4

Robots

A
n
g
u
la
r
J
e
rk

CALU AMCL
ORCA

CALU GT
ORCA

COCALU AMCL
ORCA

COCALU GT
ORCA

(d) Angular Jerk in rad
s3

,
ORCA

4 5 6 7 8
0

1

2

3

4

5

6

7

8
x 10

4

Robots

A
n
g
u
la
r
J
e
rk

CALU AMCL
CP

CALU GT
CP

COCALU AMCL
CP

COCALU GT
CP

(e) Angular Jerk in rad
s3

, CP

4 5 6 7 8
0

1

2

3

4

5

6

7

8
x 10

4

Robots

A
n
g
u
la
r
J
e
rk

CALU AMCL
S

CALU GT
S

COCALU AMCL
S

COCALU GT
S

(f) Angular Jerk in rad
s3

, S

Figure 6.10: Comparing the jerk with different number of rectangular robots
for CALU and COCALU. The plots are slightly offset to enhance comparability.
The boxes define the 90% confidence interval for the mean and the bars show
the standard deviation. The first row compares the linear jerk with CALU and
COCALU combined with the three velocity selection methods and second row
compares the angular jerk

not perform well, when compared to COCALUS . Both, for angular and lin-
ear jerk the results are significantly higher when using more than five robots.
COCALUS on the other hand, while performing really well when looking at the
linear jerk, it performs also very badly for the angular jerk, when compared to
the other velocity selection methods. The peculiar drop for eight robots using
COCALUAMCL

S is visible.

60

Figure 6.11: COCALUCP with four round turtlebots, the actually driven paths
are overlaid on the picture. The pictures are two photos of the real run, one
from the start and one during the middle of the run, blended together.

The drop for eight robots using COCALUS might again be a simulation
artifact. However another explanation might be that because the workspace
gets crowded that it is essentially not possible anymore to drive through the
center, the sampled velocities that get selected are always outside of the circle.
Thus the spiral effect emerges right away.

To conclude, we can say that for rectangular shaped holonomic robots, the
results are similar to the results with round robots. While for CALU the
best performing velocity selection method is again ORCA, for COCALU it
is usually ClearPath. However in some of the scenarios COCALUORCA or
COCALUS work better than COCALUCP . Sample trajectories for the runs
with COCALUCP and CALUORCA can be found in the appendix Figure A.3.

6.3.3 Real world results

The common scenario was also tested in real world using four turtlebots. A
sample run for COCALUCP is shown in Figure 6.11. The paths are created
from following the poses reported by the AMCL running on each robot, since
no external localization method is available. Thus the paths might be off by the
localization error. The plotted trajectories are perspectively projected in order
to match the angle of the camera.

The runs were repeated ten times and the averages and standard deviation
are shown in Table B.1 in the appendix. Due to the low number of repetitions,
the result are not statistically significant. However, the times and standard
deviations across all the runs are pretty similar. This result is similar to the
simulation runs. When revisiting the results for simulation, we see that for four
robots the distinction between the various methods is not always statistically
significant even with 50 runs. Figure 6.12 and Figure 6.13 shows three sample
trajectories for the four turtlebots using the six settings. The trajectories for
COCALUORCA, CALUORCA, COCALUCP and CALUCP are shown in the
first figure and COCALUS and CALUS are exhibited in the latter figure.

61

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

(a) COCALUORCA

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

(b) CALUORCA

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

(c) COCALUCP

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

(d) CALUCP

Figure 6.12: Sample trajectories with four turtlebots in real life.
COCALUORCA is in the first row, followed by CALUORCA, COCALUCP and
CALUCP .

62

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

(a) COCALUS

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [
m

]

(b) CALUS

Figure 6.13: Sample trajectories with four turtlebots in real life. COCALUS is
in the first row, followed by CALUS .

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

(a) COCALUS

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

(b) CALUS

Figure 6.14: Sample trajectories with four quadratic turtlebots in real life.
COCALUS is in the first row, followed by CALUS .

63

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

(a) COCALUORCA

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

(b) CALUORCA

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

(c) COCALUCP

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

0.5 1 1.5 2 2.5 3

2

2.5

3

3.5

4

4.5

x [m]

y
 [

m
]

(d) CALUCP

Figure 6.15: Sample trajectories with four quadratic turtlebots in real life.
COCALUORCA is in the first row, followed by CALUORCA, COCALUCP and
CALUCP .

64

Figure 6.16: COCALUCP with four quadratic turtlebots, the actually driven
paths are overlaid on the picture. The pictures are two photos of the real run,
one from the start and one during the middle of the run, blended together.

When comparing the different trajectories, it can be seen that they vary
between different settings. However, the spiraling effect can be detected in many
runs. Interestingly, using COCALUS and CALUS , results in the spiral for every
run, while using the optimal velocity selection methods results in more different
trajectories. This is similar to the results in simulation, where the sampling
based approach works well up to five robots.

For the second approach the shape of the turtlebots is altered by attaching
a 0.42m times 0.42m box on the robots. The footprint in the configuration file
are adapted accordingly, so that the robots know their different shape. These
runs are also repeated ten times and the averages and standard deviation are
shown in Table B.2 in the appendix to give an indication of the performance.
Figure 6.3.3 shows a sample run using the four quadratic turtlebots when using
COCALUCP . The reported trajectories are again overlaid on top of two photos
of the run.

A selection of three trajectories for each setting for the quadratic robots
is presented in Figure 6.15 for the runs with COCALUORCA, CALUORCA,
COCALUCP and CALUCP and in Figure 6.14 for COCALUS and CALUS .
Looking at the trajectories, the patterns are even more diverse than with the
original round shaped turtlebots. However, we can still detect the spiraling
effect in many runs.

In summary, all the presented approaches also work in the real world sce-
nario. However these are merely a proof of concept, since due to the physical
limitations of the real world setting, i.e. less repetitions possible, no ground
truth positioning system, “only” four robots available, we have to rely on the
simulation results to properly compare the performances of the proposed sys-
tems. The differences for CALU and COCALU for the three velocity selection
methods are not statistically significant for the ten runs performed for each
setting. We will examine the behavior in real life in further detail with more
complex and different scenarios in the next section.

65

−3 −2 −1

0.5

1

1.5

2

2.5

3

3.5

x [m]

y
 [
m

]

Figure 6.17: COCALUCP with three turtlebots and two static obstacles. All
robots have to pass through a narrow passage, while the goal locations are
located on the other side. The outer two robots have to switch position. The
left picture shows the trajectories plotted in a graph together with the obstacles.
On the right, the same trajectories are overlaid on a picture of the actual run.

6.4 Moving and static obstacles in real world
scenarios

In this section examine the behavior of the on average best performing algo-
rithm COCALUCP in more complex real word scenarios. We will introduce
static obstacles that are not in the static map and moving obstacles, which are
robots that do not take the other robots into account. Hence, these uncontrolled
robots will drive straight towards the goal while avoiding only static obstacles.
Thus, the other controlled robots have to take full responsibility of avoiding the
uncontrolled robots.

The first scenario will be three robots using COCALUCP that have to pass
through a narrow passage defined by two obstacles. They start aligned next
to each other parallel to the opening of the passage and the goals are located
at the other side of the passage while the the outer two robots have to switch
position. Figure 6.17 shows the setup and one run.

The second scenario is with four robots, in which one is used as dynamic
obstacle. Hence, it will drive straight towards the goal. Again, there is a narrow
passage through which all robots have to pass. The three controlled robots are
aligned on a line with the opening of the passage. The uncontrolled robot is on
the same line on the other side of the passage. Figure 6.19 shows the setup and
one run.

66

−3 −2 −1

0.5

1

1.5

2

2.5

3

3.5

x [m]

y
 [
m

]

−3 −2 −1

0.5

1

1.5

2

2.5

3

3.5

x [m]

y
 [
m

]

−3 −2 −1

0.5

1

1.5

2

2.5

3

3.5

x [m]

y
 [
m

]

Figure 6.18: COCALUCP with three turtlebots and two static obstacles. All
robots have to pass through a narrow passage, while the goal locations are
located on the other side. The outer two robots have to switch position. The
three pictures show plots of the following the poses reported by the robots’
AMCL, since no external ground truth localization method is available.

6.4.1 Results and discussion

Figure 6.17 shows a run for the first scenario. On the left hand side the tra-
jectories are plotted together with the obstacles. The positions of the obstacles
are measured in the real world and the obstacles are plotted at the measured
positions. The trajectories are following the robots’ localized poses. Hence it
might be not completely accurate, since there is no external global positioning
system like an overhead camera to provide an actual ground truth position.
Nevertheless, we can see that the trajectories match the actually driven paths
well that can be reconstructed by the pictures taken of the real run. On the
right hand side, we exhibit a photo in which a picture from the starting position
and from the middle of the run are overlaid together with the reported paths.
The paths are perspectively transformed to match the angle of the camera.

The result shows that the robot in the top left position drives slowly in the
beginning, which is represented by the arrows being closer together. The middle
robot moves basically in a straight line through the passage. The rightmost
robot passes through the passages shortly after the middle robot and before the
left robot. This behavior emerged using only the described methods and using
the goal position as preferred velocity and no negotiation between the robots.
The only communication between the robots is the exchange of positions, shape
and speeds.

Figure 6.18 exhibits three more runs of the defined scenario. In all cases,
the middle robot is the first to pass through the passage. The left most robot
is the last one to pass for the two runs going from top to down, shown on the
left and right in the picture. In the middle, a run going from down upwards
is shown. Here the robot starting in the down-right corner its the last to pass
through the passage.

These runs show the natural variance in the approach. There are no runs

67

−2 −1
−1

0

1

2

3

4

5

x [m]

y
 [

m
]

Figure 6.19: COCALUCP with three turtlebots and an uncontrolled moving
obstacle. The three controlled robots are located together on one side and the
uncontrolled robot is on the other side. Some robots still have to pass through
the small passage defined by the two static obstacles. On the left the left
a trajectory plot is shown of the following the poses reported by the robots’
AMCL, since no external ground truth localization method is available. In the
middle, the same trajectories are overlaid on a picture of the actual run. The
right most picture shows the situation that the white robot waited until the red
uncontrolled robot passed so that it is free to move to the passage.

which are the same, since there is always a small change in the environment.
For instance, the localization might be a bit off and “jump” to a better location
at some point. This can be seen on the right picture of Figure 6.18. The
robot starting from the top left corner has a paths that is not continuous in
the beginning. However, since COCALUCP takes the localization uncertainty
into account, it still results in a collision free motion in which all robots reached
their goals.

On run for the second scenario is shown in Figure 6.19. Again the left hand
plot shows the trajectories and in the middle a picture of two photos (from
the start and around the middle of the run) are blended together and overlaid
with the perspectively projected paths. The three robots starting below are
the robots that are controlled, i.e. they do take care of collision avoidance of
other robots. The upmost robot is considered a dynamic obstacle, and thus
moves directly towards is goal location, discarding the existence of the other
robots. This means that the three controlled robots have to fully avoid the
other robot. The “uncontrolled robot” still broadcasts its pose, velocity and
shape information, together with the fact that it is an uncontrolled robot.

The plot on the left shows that the robot indeed drives directly towards its
goal location on the other side of the passage. The second and third robot from
below are actually located in or almost before the passage, thus their trajectories

68

−2 −1
−1

0

1

2

3

4

5

x [m]

y
 [
m

]

−2 −1
−1

0

1

2

3

4

5

x [m]

y
 [
m

]

−3 −2
−1

0

1

2

3

4

5

x [m]

y
 [
m

]

−2 −1
−1

0

1

2

3

4

5

x [m]

y
 [

m
]

Figure 6.20: COCALUCP with three turtlebots and an uncontrolled moving
obstacle. The three controlled robots are located together on one side and the
uncontrolled robot is on the other side. Some robots still have to pass through
the small passage defined by the two static obstacles. The four pictures show
plots of the following the poses reported by the robots’ AMCL, since no external
ground truth localization method is available.

are basically only avoiding the robot coming from above. The robot starting at
the lowest position has still to pass through the hallway and avoid the coming
robot. Interestingly, it does so by first avoiding the coming uncontrolled robot,
i.e. dynamic obstacle, and waiting just before the left static obstacle until the
dynamic obstacle has passed and then the robot continues towards its goal. This
is shown in Figure 6.19 on the right; the robot that has started lowest is still
waiting for the uncontrolled robot to pass, before continuing towards its goal.

The trajectories of four additional runs are presented in Figure 6.20. These
show that this task has more variance in the resulting trajectories. The second
plot from the left exhibits quite a similar run to the one shown also in Fig-
ure 6.19. The first and third plots from the left similar scenarios, but reversed.
Thus all robots have still to pass through the passage, except for the upmost
robot, which has a goal location located just before the passage. On the third
plot something unexpected has happened; the robot closest to the uncontrolled
robot has not gone through the passage way, but around it. This has probably
happened because it already has avoided the coming dynamic obstacle so far to
the left that the projection of the preferred velocity is on the other side of the
obstacle. Thus it moved around it. The forth plot shows a run in which a dead-
lock position occurred. The robot starting lowest avoids to the right and drives
close to the obstacle. However, the preferred velocity points directly towards
the goal, but there is the static obstacle. Hence the optimal velocity becomes

69

zero.
To conclude, it can be seen that the proposed system works well even in more

complex scenarios with static and moving obstacles. However, some limitation
were detected, since in some runs the robots got in a deadlock position before
an obstacle. This is due to the fact that only a simple goal planner is used,
where the preferred velocity points straight to the goal, i.e. when the robot is
behind an obstacle and the goal is located on the other side, the projection of
the preferred velocity on the velocity obstacle in velocity space might be at the
origin. Thus the optimal velocity is then the zero velocity. Hence, the robot will
not move anymore, since this situation does not change. These situations could
be overcome by a smarter global planner that would re-plan in such situations
to go around the static obstacle. But this is out of the scope of this thesis.

6.5 Summary

In summary, we have extensively evaluated the proposed algorithms. We have
tested and investigated various different scenarios and settings. The parameter
ε for the localization uncertainty has been tuned and the various velocity obsta-
cle types has been compared for ClearPath and the sampling based approach
together with CALU and COCALU.

Both proposed algorithms, are extensively compared with various numbers
of robots in simulation and in real life. It has been shown that for CALU in most
of the cases ORCA performs best and for COCALU the best velocity selection
method is ClearPath. However in runs with small numbers of robots many of
the results are not statistically significant, since the differences are not large
enough and the number of completed runs was too low, i.e. in the real world
setting. Furthermore, the sampling based approach showed promising results
for low numbers of robots, but for more than five robots, the performance drops
rapidly.

Finally, we have tested the on average best performing algorithm COCALUCP
in more complex scenarios that included static and dynamic obstacles. These
results show that the algorithm works well in many cases, but a combination
with a smarter global planner would help to overcome some deadlock situation,
in which the optimal velocity becomes zero. Overall it can be concluded that the
proposed algorithms can be applied in various scenarios, i.e. including multiple
controlled robots, static obstacles and uncontrolled robots.

70

Chapter 7

Conclusions

As low-cost mobile robots are becoming accessible, workspaces are likely to
feature not one buy multiple robots.

The traditional approach uses a centralized planner that controls all the
robots in the working space. However this is only feasible for a small number of
robots and not robust. If the planner fails, the whole system breaks. This thesis
combines decentralized approaches that show promising results in simulation
with per-agent onboard localization to realize a multi-mobile robot navigation
solution. The contributions of this research work can be summarized as follows.

We combine the use of per-agent base localizations with decentralized lo-
cal collision avoidance algorithms based on the velocity obstacle paradigm. In
particular, we propose a system that is using only limited local communication
to share position, velocity and shape information, while no negotiation or path
planning is involved during the collision avoidance.

Most importantly, this thesis introduces the means of an error-bound for
the localization uncertainty. This can be used to balance the error introduced
by localization and the virtual increase of the robots’ footprints to allow safe
navigation. We present a circular and a close convex approximation of the
particle cloud of the localization algorithm that used in combination with the
robots’ footprint to calculate new collision free velocity commands close to the
preferred velocity.

We present how static obstacles can be incorporated in this approach to
provide a fully distributed local navigation solution. A laser scanner (LIDAR)
as sensor source is assumed; however, a solution to deal with 3D point clouds is
also provided.

The resulting approaches are evaluated and tested under various conditions
and scenarios in simulation and real life. Parameters for the bound of the
localization error are determined and the various types of velocity obstacles are
compared. The two approaches to bound the localization uncertainty are further
evaluated with three different velocity selection methods and various numbers
of differently shaped robots. More complex scenarios including a small passage
defined by two static obstacles and using one robot as uncontrolled dynamic

71

obstacle are investigated using the best performing algorithm.
Recommendations for future research include sensor based estimation of the

relative positions and eventually of the velocity and shape information to elimi-
nate the need of communication. A second extension can be done to incorporate
human tracking into the system. The recent work of Mitzel et al. [23] show a
promising approach that can be incorporated into the proposed system. Ad-
ditionally, Berg et al. recently introduced the acceleration velocity obstacles
(AVO) [31] that can be used instead of the linear velocity obstacle to enable
more accurate incorporation of dynamic and movement constraints.

To conclude, even though convex outline collision avoidance under localiza-
tion uncertainty (COCALU) shows promising results, there is no silver bullet
that works well in all cases. Or as Nietzsche said: “You have your way. I have
my way. As for the right way, the correct way, and the only way, it does not
exist.”

72

Bibliography

[1] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Sieg-
wart. Optimal reciprocal collision avoidance for multiple non-holonomic
robots. In Proceedings of the 10th International Symposium on Distributed
Autonomous Robotic Systems (DARS), 2010.

[2] D. Althoff, J. Kuffner, D. Wollherr, and M. Buss. Safety assessment of
robot trajectories for navigation in uncertain and dynamic environments.
Autonomous Robots, 32:285–302, 2012. 10.1007/s10514-011-9257-9.

[3] K. Azarm and G. Schmidt. Conflict-free motion of multiple mobile robots
based on decentralized motion planning and negotiation. In Proceedings of
the IEEE International Conference on Robotics and Automation, volume 4,
pages 3526 –3533 vol.4, apr 1997.

[4] J. Bruce and M. Veloso. Safe multirobot navigation within dynamics con-
straints. Proceedings of the IEEE, 94(7):1398 –1411, july 2006.

[5] T. M. Chan. Optimal output-sensitive convex hull algorithms in two and
three dimensions. Discrete & Computational Geometry, 16:361–368, 1996.

[6] B. Chazelle. On the convex layers of a planar set. IEEE Transactions on
Information Theory, 31(4):509–517, 1985.

[7] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen. CALU: Collision avoid-
ance with localization uncertainty [Demonstration]. In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), Valencia, Spain, June 2012.

[8] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen. Collision avoidance under
bounded localization uncertainty. In Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Algarve,
Portugal, October 2012.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 2001.

[10] A. Ferrara and M. Rubagotti. A dynamic obstacle avoidance strategy for a
mobile robot based on sliding mode control. In IEEE Control Applications
(CCA) and Intelligent Control (ISIC), pages 1535 –1540, july 2009.

73

[11] P. Fiorini and Z. Shiller. Motion planning in dynamic environments using
velocity obstacles. International Journal of Robotics Research, 17:760–772,
July 1998.

[12] D. Fox. Kld-sampling: Adaptive particle filters. In Advances in Neural
Information Processing Systems 14. MIT Press, 2001.

[13] D. Fox. Adapting the sample size in particle filters through kld-sampling.
International Journal of Robotics Research, 22, 2003.

[14] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to
collision avoidance. Robotics Automation Magazine, IEEE, 4(1):23 –33,
mar 1997.

[15] B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In In Proceedings of
the 11th International Conference on Advanced Robotics, pages 317–323,
2003.

[16] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid
mapping with rao-blackwellized particle filters. IEEE Transactions on
Robotics, 23:2007, 2007.

[17] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha, and
P. Dubey. Clearpath: Highly parallel collision avoidance for multi-agent
simulation. In ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA), pages 177–187. ACM, 2009.

[18] D. Hennes, D. Claes, K. Tuyls, and W. Meeussen. Multi-robot collision
avoidance with localization uncertainty. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), Va-
lencia, Spain, June 2012.

[19] B. Kluge, D. Bank, E. Prassler, and M. Strobel. Coordinating the motion
of a human and a robot in a crowded, natural environment. In Advances
in Human-Robot Interaction, volume 14 of Springer Tracts in Advanced
Robotics, pages 231–234. Springer Berlin / Heidelberg, 2005.

[20] B. Kluge and E. Prassler. Reflective navigation: Individual behaviors and
group behaviors. In Proceedings of the IEEE International Conference on
Robots and Automation (ICRA), pages 4172–4177, 2004.

[21] Y. Koren and J. Borenstein. Potential field methods and their inherent
limitations for mobile robot navigation. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pages 1398 –1404 vol.2,
apr 1991.

[22] M. Kraus and K. Bürger. Interpolating and downsampling rgba volume
data. In Proceedings of Vision, Modeling, and Visualization, 2008.

74

[23] D. Mitzel, G. Floros, P. Sudowe, B. van der Zander, and B. Leibe. Real time
vision based multi-person tracking for mobile robotics and intelligent vehi-
cles. In Proceedings of the International Conference on Intelligent Robotics
and Applications (ICIRA), pages 105–115, 2011.

[24] M. Quigley et al. ROS: An open-source Robot Operating System. In
Proceedings of the Open-Source Software workshop (ICRA), 2009.

[25] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha. Independent navi-
gation of multiple mobile robots with hybrid reciprocal velocity obstacles.
In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5917–5922, 2009.

[26] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha. Smooth and
collision-free navigation for multiple robots under differential-drive con-
straints. In Proceedings of the IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2010.

[27] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha. The hybrid re-
ciprocal velocity obstacle. IEEE Transactions on Robotics, 27(4):696–706,
2011.

[28] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents series). The MIT Press, 2005.

[29] J. van den Berg, S. Guy, M. Lin, and D. Manocha. Reciprocal n-body
collision avoidance. In Robotics Research, volume 70, pages 3–19, 2011.

[30] J. van den Berg, M. Lin, and D. Manocha. Reciprocal velocity obstacles for
real-time multi-agent navigation. In Proceedings of the IEEE International
Conference on Robots and Automation (ICRA), pages 1928 –1935, 2008.

[31] J. van den Berg, J. Snape, S. Guy, and D. Manocha. Reciprocal collision
avoidance with acceleration-velocity obstacles. In Proceedings of the IEEE
International Conference on Robots and Automation (ICRA), 2011.

[32] R. Vaughan. Massively multi-robot simulation in stage. Swarm Intelligence,
2(2):189–208, 2008.

75

Appendix A

Results for VO selection
with ground truth

VO HRVO RVO

12

14

16

18

20

22

24

26

28

30

32

Type VO

T
im

e
[s
]

CALUCP

CALUS

COCALUCP

COCALUS

(a) Time in s

VO HRVO RVO

3.5

4

4.5

5

5.5

Type VO

D
is
ta

n
ce

tr
a
v
el
le
d
[m

]

CALUCP

CALUS

COCALUCP

COCALUS

(b) Distance in m

VO HRVO RVO

500

1000

1500

2000

2500

3000

3500

4000

Type VO

L
in
ea

r
J
e
rk

CALUCP

CALUS

COCALUCP

COCALUS

(c) Linear Jerk

VO HRVO RVO
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

Type VO

A
n
g
u
la
r
J
er
k

CALUCP

CALUS

COCALUCP

COCALUS

(d) Angular Jerk

Figure A.1: Comparing the different VO types for CALU and COCALU with
ground truth. The plots are slightly offset to enhance comparability. The boxes
define the 90% confidence interval for the mean and the bars show the standard
deviation. (a) Average time needed to complete the run. (b) Distance travelled.
(c) Linear jerk. (d) Angular jerk.

77

A.1 Simulation runs with round robots

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]
0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]
0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

(a) COCALUCP (on top) and CALUORCA below with N = (3, 4, 5)

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

(b) COCALUCP (on top) and CALUORCA below with N = (6, 7, 8)

Figure A.2: Sample trajectories with different numbers of circular differential
drive robots using COCALUCP and CALUORCA and AMCL.

78

A.2 Simulation runs with rectangular robots

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]
y
 [
m

]
0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]
0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]
y
 [
m

]

(a) COCALUCP (on top) and CALUORCA below with N = (3, 4, 5)

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

0 1 2 3 4

0

1

2

3

4

x [m]

y
 [
m

]

(b) COCALUCP (on top) and CALUORCA below with N = (6, 7, 8)

Figure A.3: Sample trajectories with different numbers of rectangular holonomic
robots using COCALUCP and CALUORCA and AMCL.

79

Appendix B

Real world results

B.1 Round turtlebots

Time [s] Distance [m] Linear Jerk Angular Jerk
COCALUORCA 13.45 ± 1.82 3.03 ± 0.11 759.11 ± 165.23 8835.84 ± 2944.38
CALUORCA 13.36 ± 3.08 3.07 ± 0.11 761.87 ± 253.36 7828.40 ± 3603.39
COCALUCP 14.16 ± 2.06 3.13 ± 0.09 761.56 ± 197.18 10271.57 ± 4404.64
CALUCP 13.73 ± 1.34 3.07 ± 0.09 827.03 ± 190.86 10381.79 ± 2653.95
COCALUS 13.27 ± 0.68 3.04 ± 0.04 810.46 ± 118.00 9594.88 ± 1879.60
CALUS 12.86 ± 0.35 3.08 ± 0.02 882.17 ± 143.23 8740.49 ± 2200.62

Table B.1: Results for 10 runs in real life with round shaped turtlebots.

B.2 Quadratic shaped turtlebots

Time [s] Distance [m] Linear Jerk Angular Jerk
COCALUORCA 14.33 ± 1.21 2.71 ± 1.02 554.64 ± 234.19 7098.96 ± 3543.96
CALUORCA 16.33 ± 1.10 3.15 ± 0.13 657.17 ± 203.09 8953.85 ± 3516.70
COCALUCP 14.94 ± 1.46 2.95 ± 0.97 616.17 ± 256.54 13467.98 ± 4909.67
CALUCP 15.95 ± 1.50 3.14 ± 0.07 750.91 ± 130.04 9708.18 ± 5038.84
COCALUS 14.08 ± 1.52 2.84 ± 0.93 869.05 ± 310.77 17660.79 ± 8299.73
CALUS 14.18 ± 1.92 2.88 ± 0.94 768.18 ± 300.07 14187.81 ± 4707.93

Table B.2: Results for 10 runs in real life with quadratic shaped turtlebots.

80

