
J.S. Sichman, F. Bousquet, P. Davidsson (Eds.): MABS 2002, LNAI 2581, pp. 155-170, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Multi-agent Patrolling: An Empirical Analysis
of Alternative Architectures

Aydano Machado1, Geber Ramalho1, Jean-Daniel Zucker2, and Alexis Drogoul2

1 Centro de Informática (CIn) – Universidade Federal de Pernambuco
 Caixa Postal: 7851

50732-970 Recife-PE Brasil
{apm, glr}@cin.ufpe.br

2 Laboratoire d’Informatique de Paris VI (LIP6) – Université Paris 6
Boîte 169 – 4 Place Jussieu
75252 PARIS CEDEX 05

{Jean-Daniel.Zucker, Alexis.Drogoul}@lip6.fr

Abstract. A group of agents can be used to perform patrolling tasks in a variety
of domains ranging from computer network administration to computer
wargame simulations. Despite its wide range of potential applications, multi-
agent architectures for patrolling have not been studied in depth yet. First state
of the art approaches used to deal with related problems cannot be easily
adapted to the patrolling task specificity. Second, the existing patrolling-
specific approaches are still in preliminary stages. In this paper, we present an
original in-depth discussion of multi-agent patrolling task issues, as well as an
empirical evaluation of possible solutions. In order to accomplish this study we
have proposed different architectures of multi-agent systems, various evaluation
criteria, two experimental scenarios, and we have implemented a patrolling
simulator. The results show which kind of architecture can patrol an area more
adequately according to the circumstances.

1 Introduction

To patrol is literally “the act of walking or travelling around an area, at regular
intervals, in order to protect or supervise it” [1]. This task is by nature a multi-agent
task and there are a wide variety of problems that may reformulate as particular patrol
task. As a concrete example, during the development of the Artificial Intelligent
component of an interactive computer wargame, we did face the problem of
coordinating a group of units to patrol a given rough terrain in order to detect the
presence of “enemies”. The quality of the agent architecture used for patrolling may
be evaluated using different measures. Informally, a good strategy is one that
minimizes the time lag between two passages to the same place and for all places.

Beyond simulators and computer games, performing this patrolling task efficiently
can be useful for various application domains where distributed surveillance,
inspection or control are requires. For instance, patrolling agents can be used for
helping administrators in the surveillance of failures or specific situations in a Intranet
[2], for detecting recently modified or new web pages to be indexed by search engines

156 A. Machado et al.

[6], for identifying objects or people in dangerous situations that should be rescued by
robots [14], etc.

Despite its relevance, the patrolling task has not been seriously studied yet. On one
hand, the literature has sound works concerning related studies, such as network
mapping [10], the El Farol [4], steering behaviors [3, 5, 13]. However, these studies’
characteristics are quite different from the patrolling task, which requires specific
solutions. On the other hand, the works devoted precisely to patrolling tasks [9, 11,
12] do not present a systematic evaluation of the possible coordination strategies,
agent models, agent society organizations, communication constraints, and so on.

In this paper we present an original in-depth analysis of the patrolling task issues
and the possible multi-agent-based solutions. To do this study we followed a
methodology. First, we have defined some criteria for evaluating the solutions.
Second, we have proposed several multi-agent architectures varying parameters such
as agent type (reactive vs. cognitive), agent communication (allowed vs. forbidden),
coordination scheme (central and explicit vs. emergent), agent perception (local vs.
global), decision-making (random selection vs. goal-oriented selection), etc. Third,
we have implemented a dedicated simulator to enable the experimental tests. Fourth,
we have tested the different solutions using two scenarios.

The remainder of this paper is organized as follows. Next section defines precisely
what we mean by the patrolling tasks. Section 3 shows the main steps we have
followed in our study according to the methodology we mentioned early. Section 4
presents the results and the discussion about them. Section 5 draws some conclusions
and indicates directions for future work.

2 The Patrolling Task

There are many situations where one needs to protect, rescue, search, detect, oversee
or track either something or someone. Computers can already perform these tasks in
virtual worlds (such as those of computer games or computer networks) and,
probably, in real world in a near future [17]. These tasks can involve some sort of
patrolling, which may exhibits slightly different characteristics according to the
domain and circumstances. It is then necessary, for our study, to have a more precise
definition of patrolling.

In terms of area, the most complex case is the patrolling of continuous terrain,
since the search space is large [16]. In these cases, one of the techniques used to
change the representation of the terrain is skeletonization [15, 16], which consist of
replacing the real terrain by a graph (skeleton) representing the possible paths as
shown in Fig. 1. Voronoi diagrams, visibility graphs and C-cells can be used to
generate such a graph. Once the terrain abstraction is available, the patrolling task is
equivalent. A further advantage of adopting such an abstract representation is that the
patrolling solutions proposed to it can be applied to different kind of problems, from
terrain motion to web navigation.

Given a graph, the patrolling task refers to continuously visiting all the graph nodes
so as to minimize the time lag between two visits.

Multi-agent Patrolling: An Empirical Analysis of Alternative Architectures 157

There are some variations in the graph to be patrolled. In some situations, such as a
terrain containing mobile obstacles, the graph edges may change. In other situations,
priorities may be set to some regions covered by sub-graphs. The edges may have
different associated lengths (weights) corresponding to the real distance between the
nodes.

In our case study, we have reduced the patrol task to graphs with the following
characteristics: static edges (no mobile obstacles in the terrain), unitary edged length
(the distance between two connected nodes is one), uniform patrolling (the same
priority for all nodes). In other words, given N agents, K nodes, connected by edges
with equal weights, the patrolling problem is to achieve a global behavior that
minimizes the time lag in which any agent has not visited a node.

3 Methodology

As discussed in the introduction, despite the applicability of multi-agent systems for
patrolling tasks, as far as we know, there is no systematic study concerning the
subject in the literature. In particular, various questions remain opened, such as:
which kind of multi-agent system (MAS) architecture should be chosen by the MAS
designer for a given patrolling task? What are the means to evaluate an implemented
MAS? To what extent parameters, like size and connectivity, influence the overall
MAS performance?

To answer these questions we have adopted a methodology that consists of the
following steps: definition of performance measures, proposition of different MAS
architectures, definition of some case studies (patrolling scenarios), and the
implementation of the simulator to perform the experiments. These steps will be
explained in the rest of this session.

3.1 Evaluation Criteria

One of the contributions of our work lies in the choice of evaluation criteria for
comparing different MAS architectures, since defining performance measures adapted
to the patrolling task is still an open problem in the related works [9, 11, 12]. As
discussed next, we have chosen the following evaluation criteria: idleness, worst
idleness and exploration time. Other criteria could have been adopted, but the ones we
propose are adequate to measure the quality of the solutions.

Considering that a cycle is the time necessary for an agent to go from a node to an
adjacent one, we call instantaneous node idleness the number of cycles that a node
has remained unvisited. This instantaneous node idleness is measured at each cycle.
The instantaneous graph idleness is the average instantaneous idleness of all nodes in
a given cycle. Finally, the graph idleness, or simply idleness, is the average
instantaneous graph idleness over n-cycle simulation.

In the same context, another interesting measure is the worst idleness, i.e. the
biggest value of instantaneous node idleness occurred during the whole simulation.

The last evaluation criterion is, what we call the exploration time, which consists
of the number of cycles necessary to the agents to visit, at least once, all nodes of the

158 A. Machado et al.

graph. This corresponds intuitively to the notion of exploring an area in order to
create its geographic diagram.

These performance measures naturally tend to exhibits better results as the number
of agents patrolling the graph grows. However, if the coordination among the agents
is not good enough, the improvement caused by the insertion of new agents may be
minimized. In order to measure coordination quality, as the number of agents
augments, we have decided to measure the individual contribution of the agents,
normalizing the three criteria (idleness, worst idleness and exploration time) as stated
in equation (1):

nodesofnumber

agentsofnumber
valueabsolutevaluenormalized

__

__
__ ×= (1)

3.2 Multi-agent Systems to Be Investigated

In order to define the MAS architectures that would be interesting to be evaluated in
the patrolling task, we have explored four basic parameters (as displayed in Table 1).
Of course, other parameters could have been taken into account, but the idea
underlying our choice was to explore the choice of agent architectures described in
the literature in a methodological way. This bottom-up and incremental approach to
agent design has been shown to be essential for understanding and measuring the
impact of these architectures on the dynamics of a collective problem-solving process
[19]. The architectures displayed in Table 1 follow this principle. In the same way, we
have only considered homogeneous groups of agents (i.e., all the agents share the
same architecture), except, of course, the last two ones, which require an explicit
coordinator agent

Table 1. Resume of the main features of the chosen agents.

Architecture Name
Basic
Type Communication Next Node Choice

Coordination
Strategy

Random Reactive locally random
Conscientious Reactive

none
locally individual idleness

Reactive with Flags
reactive

flags locally shared idleness
Conscientious Cognitive none globally individual idleness
Blackboard Cognitive blackboard globally shared idleness

emergent

Random Coordinator globally random
Idleness Coordinator

cognitive
messages

globally shared idleness
central

Straightforwardly, the first parameter we have considered is the classical difference
between reactive and cognitive agents: whereas reactive agents simply act based on
their current perception, cognitive ones may pursue a goal. A further and natural
constraint we have imposed is that the field of vision of reactive agents is one-node
depth, i.e., a reactive agent only perceives the adjacent nodes. This follows the fact
that reactive agents can not, by definition, plan a path to distant nodes. Cognitive
agents can perceive a depth d (d > 1) of graph, in this work the agents can perceive
the whole graph and use path-finding techniques (Floyd-Warshall Algorithm in our
case) to reach any goal-node.

Multi-agent Patrolling: An Empirical Analysis of Alternative Architectures 159

An important issue in performing collectively a patrolling task is the
communication among the agents. Taking into account the real-word situations agents
may face while patrolling, there are roughly three ways for the agents communicate to
each other: via flags, via blackboard, and via messages. In the first case, agents leave
flags or marks in the environment [7, 8]. These marks are recognized by themselves
or by the other agents. In the second case, the information about the environment is
stored in a common base (e.g., a command and control center) that can be accessed by
all agents. In the last case, agents can communicate with the others directly by
exchanging messages. In a first moment, the agents can only exchange messages with
the coordinator, when it exists. Enabling this kind of communication among all agents
would require more complex architectures, including, for instance, negotiation
mechanisms for conflict solving, such as the next node choice.

Decision-making is also an important point in generating possible solutions. In
other words, the question is to determine how the next node will be chosen. Two
aspects should be considered: the field of vision, which can be local or global as
discussed earlier; and the choice criteria, which can be random or heuristically based
on node idleness. In the node idleness case, there are two variations depending on
whether an agent knows about what the other agents have been doing. In the
individual idleness heuristic, the agent considers only its own visits, whereas in the
shared idleness heuristic, it takes into account the movement of all agents. Choosing
nodes according to the individual idleness is equivalent to follow a gradient, as this
technique is used in multi-agent systems [3, 5].

Finally, a key aspect in multi-agent movement coordination is to use a central
coordinator, which chooses the goal-node of each (cognitive) agent, or a decentralized
one, where coordination emerges from agent interaction.

There are several possible MAS architectures of combining these four parameters.
We have studied all of them and then chosen the ones that seemed to be the most
appropriated to the task (Cf. Table 1, column 1).

We have also considered another coordination parameter (not shown in Table 1):
the monitoring capability. While a cognitive agent is following a path to its goal-
node, it is useful to monitor whether any other agent is visiting this given node in the
meantime in order to reassign another goal. After the first experiments, we have
noticed that agents with monitoring capabilities always performed better than the
equivalent agents without monitoring. In order to keep the presentation of results
graphics more readable, we have just included in this paper the agents capable of
monitoring (whenever monitoring is feasible), i.e. Blackboard Cognitive Agent,
Random Coordinator and Idleness Coordinator.

3.3 Experiment Scenarios

After reflecting about the influence the environment parameters could have on the
system performance, we have realized that more than the number of nodes, it is
important to control the graph connectivity, i.e. the number of edges. In this
perspective, we have created two different maps (as shown on Fig. 1). Map A has few
obstacles and a highly connected graph, representing the fact that it is easy to go to
any region. Map B has some bottlenecks, generating a graph with the same number of
nodes but with much fewer edges.

160 A. Machado et al.

Instead of changing the number of nodes, we have equivalently changed the
number of agents. We have used populations of 1, 2, 5, 10, 15, and 25 agents in order
to keep adequate ratios between the number of nodes (50) and the number of agents.

Fig. 1. Maps A and B in our simulator. Black blocks in the maps represent obstacles. The
graphs of possible paths are shown. The graph of Map A has 106 edges and 50 nodes, and the
graph of Map B, with more bottlenecks, has 69 edges and the same 50 nodes. These figures are
also snapshots of the simulator.

3.4 Simulator

In order to accomplish a larger number of experiments, we have developed a
dedicated simulator using C++/OpenGL, which is a commonly used development
platform in computer games community. This simulator implements the agents
defined in Table 1 and emulates the patrolling task recording the data for later
analysis.

A map is described in a proprietary format, allowing the researcher to indicate all
the characteristics of environment, such as the size of the map, the obstacles, the
graph, the agents initial position, the number and kind of MAS architecture to use
(according to Table 1), the number of steps to run, etc.

4 Experimental Results and Discussion

For each of the seven MAS architectures of Table 1 (column 1), we have run 360 (2 x
6 x 30) simulations, corresponding to 2 maps (A and B), six different number of
agents (1, 2, 5, 10, 15 and 25) and 30 different staring points (i.e., initial positions of
the agents). The 30 initial positions are randomly chosen once and then used in testing
the different architectures.

Each simulation is composed of 3000 cycles, i.e. the agents change from a node to
another 3000 times. At the beginning of simulation, we consider that all instantaneous
node idleness is zero, as they had just been visited. Consequently, there is a sort of
transitory phase in which the instantaneous graph idleness tends to be low, not
corresponding to the reality in a steady-state phase, as shown in Fig. 2. For this

Multi-agent Patrolling: An Empirical Analysis of Alternative Architectures 161

reason, the (final) graph idleness is measured only during the stable phase. According
to some early experiments, we have noticed that the transitory phase always finishes
before the cycle 750 (except for the Random Reactive Agents and the Random
coordinator whose behavior may sometimes be highly unstable). The graph idleness is
the measured along the remaining 2250 cycles.

(a)

(b)

Fig. 2. The graphics show the evolution of 5 agents during a simulation (idleness in y-axis and
cycles in x axis).

4.1 Results Graphics

In the following graphics, each different line type represents a different MAS
architecture and the vertical bars show the standard deviations on the average
calculated from the 30 variations of initial position of agents. The graphics are shown
in pairs, showing respectively the absolute and normalized performances.

162 A. Machado et al.

Fig. 3 and Fig. 4 show the graph idleness measures (in y-axis), and the
corresponding normalized value, in Map A respectively, as the number of agents
grows (x-axis).

Fig. 3. Graph representing Idleness for Map A.

Fig. 4. Graph representing Normalized Idleness for Map A.

Multi-agent Patrolling: An Empirical Analysis of Alternative Architectures 163

Fig. 5 and Fig. 6 show the graph idleness measures (in y-axis), and the
corresponding normalized value, in Map B respectively, as the number of agents
grows (x-axis).

Fig. 5. Graph Idleness for Map B.

Fig. 6. Graph Normalized Idleness for Map B.

164 A. Machado et al.

Similarly, Fig. 7 and Fig. 8 present the results of the graph worst idleness. The
main difference in this case is that worst idleness is measured over the 3000 cycles,
whereas (average) idleness does only consider the stable phase.

Fig. 7. Graph Worst Idleness in Map A.

Fig. 8. Graph Normalized Worst Idleness in Map A.

Multi-agent Patrolling: An Empirical Analysis of Alternative Architectures 165

Fig. 9 and Fig. 10 present the results of the graph worst idleness, in Map B, and the
corresponding normalized value.

Fig. 9. Graph of Worst Idleness in Map B.

Fig. 10. Graph of Normalized Worst Idleness in Map B.

166 A. Machado et al.

As opposed to previous graphics, Fig. 11 (resp. Fig. 12) plots the number of cyc-
les (resp. normalized number of cycles) required for a complete exploration of the
Map A.

Fig. 11. Graph Exploration Time in Map A.

Fig. 12. Normalized Exploration Time in Map A.

Multi-agent Patrolling: An Empirical Analysis of Alternative Architectures 167

As opposed to previous graphics, Fig. 13 (resp. Fig. 14) plots the number of cycles
(resp. normalized number of cycles) required for a complete exploration of the Map
B.

Fig. 13. Graph Exploration Time in Map B.

Fig. 14. Normalized Exploration Time in Map B.

168 A. Machado et al.

4.2. Discussion

From a general perspective, we can see three distinct groups which we call random,
“non-coordinated" and top group. Table 2 indicates the composition of each group.

Table 2. MAS acrchitecture groups

Group Agents

Random Reactive Agent
Random Group

Random Coordinator
Reactive Agent with Flags

Non-coordinated Group
Blackboard Cognitive Agent
Conscientious Reactive Agent
Conscientious Cognitive AgentTop Group
Idleness Coordinator

The top group obtained the best results in all metrics. The Conscientious Reactive
Agent performance has been a little better that the other agents of this group, but this
small difference has tended to zero as the population increased. The random group
has presented the worst results for small populations. These results have been
improved, being almost equivalent to the top group, with more numerous populations.
A strong characteristic of this group is its unpredictable behavior (there is not exactly
a “stable phase”), which is reflected in large standard deviations. The non-
coordinated group presented an expected behavior: every agent tends to go to the
same places at the same moment. Consequently, the groups somehow behave as a
single agent.

Concerning Map A vs. Map B. (i.e., graph connectivity) the multi-agent system
performance has been always worse in Map B than in Map A, in all experiments,
using all metrics. The top group has been less affected by the bottlenecks in Map B.
The random group was the most affected, with truly bad results in Map B.

The normalized results are very interesting since they show the individual
contribution of each agent in the architecture. Moreover, the normalized results
indicate clearly the coordination capability of a given architecture: the best is the
coordination, the strongest is the impact of adding new agents to the architecture. For
instance, the performance of the non-coordinated group is even worse considering the
normalized measured. Regarding the exploration time, curiously increasing
population does not yield a significant increasing of the individual performance, no
matter the kind of MAS architecture used.

Besides identifying the top group of MAS architectures, these experiments show us
some preliminary guidelines in designing MAS for patrolling. The first and main step
is to understand the application domain constraints and characteristics. It is essential
to determine the path graph in terms of number nodes and connectivity, the
availability of agent communication, the maximum accepted idleness, the desired
average idleness and idleness variation over the cycles, and the necessity of an
exploration phase and the maximum time lag for it. Knowing these characteristics, it
will be easier to choose the best MAS architecture. For instance, for graphs containing
bottlenecks, random approaches are not recommended. If no significant variation on

Multi-agent Patrolling: An Empirical Analysis of Alternative Architectures 169

idleness is desired, random approaches should also discard. Moreover, according to
the desired idleness, the number of agents can be determined (the ratio one agent for
10 nodes yields enough good results).

5 Conclusions

This work presents a many-fold contribution to the problem of multi-agent patrolling.
First, a general characterization of the multi-agent patrolling problem is given, and its
wide range of application in a variety of domains is pinpointed. Second, the method
proposed for evaluating different MAS architectures for patrolling is generic and
meant to be used as a basis for future analysis. Third, different MAS architectures for
patrolling are suggested as well as a preliminary typology, according to some
coordination parameters (this typology follows the same approach we have been using
in other tasks [18]). Finally, this work furnishes some preliminary guidelines for MAS
designers interested in patrolling tasks.

The simulator developed for the purpose of this study is available upon request for
other researchers interested in experimenting with their own patrolling strategy.

In the future we intend to augment the complexity of the agent and MAS
architectures. This includes features such as different path-finding techniques, which
instead of searching shortest paths take into account the instantaneous idleness of the
nodes in-between the current location and the goal. In the same direction, we plan to
use the exact distance between two nodes, instead of a unitary one, in order to use
more realistic heuristics for choosing the next node. Finally, explicit communication
between agents is another direction of exploration, which would give the opportunity
to explore negotiations mechanisms for solving conflicts

References

1. Abate, Frank R.: The Oxford Dictionary and Thesaurus: The Ultimate Language
Reference for American Readers. Oxford Univ. Press. 1996

2. Andrade, R. de C., Macedo, H. T., Ramalho, G. L., and Ferraz, C. A. G.: Distributed
Mobile Autonomous Agents in Network Management. Proceedings of International
Conference on Parallel and Distributed Processing Techniques and Applications, 2001

3. Arkin, Ronald C.: Behavior-Based Robot Navigation for Extended Domains. Adaptive
Behaviors. Fall 1992, vol. 1(2):201–225

4. Arthur, W. B.: Inductive Reasoning and Bounded Rationality (The El Farol Problem).
American Economic Review (1994) 84: 406–411.

5. Balch, Tucker and Arkin, Ronald C.: Behavior-Based Formation Control for Multi-robot
Teams. IEEE Transactions on Robot and Automation (1999) vol. XX

6. Cho J., Garcia-Molina, H.: Synchronizing a database to Improve Freshness. In
Proceedings of 2000 ACM International Conference on Management of Data (SIGMOD),
May 2000.

7. Dorigo, M. Maniezzo, V. & Coloni, A. The Ant System: optimization by a colony of
cooperating agents. IEE Tarns. System, Man and Cybernetics B26(1) (1996). 29–41

8. Ferber, Jacques: Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison-Wesley (1999) 439–445.

9. Howland, Geoff: A Practical Guide to Building a Complete Game AI: Volume II.
 http://www.lupinegames.com/articles/prac_ai_2.html, 1999

170 A. Machado et al.

10. Minar N., Hultman K, and Maes P. Cooperating Mobile Agents for Mapping Networks. In
the Proceedings of the First Hungarian National Conference on Agent Based Computing,
1998

11. Pottinger, Dave C.: Coordinated Unit Movement. Game Developer (January 1999) 42–51
12. Pottinger, Dave C.: Implementing Coordinated Unit Movement. Game Developer

(February 1999) 48–58
13. Reynolds, C.W.: Steering Behaviors for Autonomous Characters. Presented at Game

Developers Conference (1999). http://www.red3d.com/cwr/steer/
14. RoboCup Rescue home page: http://www.r.cs.kobe-u.ac.jp/robocup-rescue/, 2001.
15. Russell, Stuart J. and Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice

Hall (1995) 796–808
16. Stout, Brian W.: Smart Moves: Intelligent Path-Finding. Game Developer (October/

November 1996) 28–35
17. Sukthankar, G. and Sycara K.: Team-aware Robotic Demining Agents for Military

Simulation. Robotics Institute - Carnegie Mellon University.
http://www-2.cs.cmu.edu/~softagents/iaai00/iaai00.html, 2000.

18. Zucker, J.-D. and C. Meyer. Apprentissage pour l'anticipation de comportements de
joueurs humains dans les jeux à information complète et imparfaite: les "Mind-Reading
Machines". Revue d'Intelligence Artificielle 14(3-4). (2000). 313–338

19. Drogoul, A. et A. Collinot. Applying an Agent-Oriented Methodology to the Design of
Artificial Organizations: a Case Study in Robotic Soccer. Journal of Autonomous Agents
and Multi-Agent Systems 1(1): 113–129. 1998

	Multi-agent Patrolling: An Empirical Analysis of Alternative Architectures
	1 Introduction
	2 The Patrolling Task
	3 Methodology
	3.1 Evaluation Criteria
	3.2 Multi-agent Systems to Be Investigated
	3.3 Experiment Scenarios
	3.4 Simulator

	4 Experimental Results and Discussion
	4.1 Results Graphics
	4.2. Discussion

	5 Conclusions
	References

