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Abstract—Accurate state estimation for a mobile robot often 
requires the fusion of data from multiple sensors. Software that 
performs sensor fusion should therefore support the inclusion of 
a wide array of heterogeneous sensors. This paper presents a 
software package, robot_localization, for the Robot Operating 
System (ROS). The package currently contains an 
implementation of an extended Kalman filter (EKF). It can 
support an unlimited number of inputs from multiple sensor 
types, and allows users to customize which sensor data fields are 
fused with the current state estimate. In this work, we motivate 
our design decisions, discuss implementation details, and provide 
results from real-world tests.  
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I. INTRODUCTION 
A critical challenge for all mobile robots is the ability to 

answer the question, “Where am I?” [1] The answer to this 
question can be obtained through the robot’s sensors, which 
can provide both proprioceptive and exteroceptive data. 
However, sensors are imperfect, and their measurements are 
prone to errors. By fusing the data from multiple sensors, we 
can obtain an overall position estimate whose error is less than 
would be possible by using a single sensor in isolation. It is 
often the case that a greater amount of sensor input data will 
produce more accurate position estimates. It is therefore critical 
that any software that performs sensor fusion on a mobile robot 
platform is able to take in any and all available data on the 
platform. Additionally, the software should be easy to use and 
highly customizable, thereby providing users with greater of 
flexibility while allowing them to focus on higher-level 
behaviors. 

In this paper, we introduce our software package, 
robot_localization, for the Robot Operating System (ROS) [2]. 
ROS is an open-source robotic framework that has been widely 
adopted across academia, industry, and militaries around the 
world. Our software addresses the sensor fusion needs of a 
broad range of mobile robots and allows for rapid integration 
with those platforms. 

In Section II, we detail our motivation for the creation of 
the robot_localization package. In Section III, we describe our 
extended Kalman filter (EKF) [3] ROS node, 
ekf_localization_node. Section IV details experiments that we 

performed on a Pioneer 3 mobile robot. Section V provides a 
summary discussion of the experiments, and Section VI 
concludes with applications to other platforms and details plans 
for extending both ekf_localization_node and the 
robot_localization package. 

II. MOTIVATION 
The ROS community has developed and contributed a 

wealth of software to facilitate robotic development and 
practice, with over 2,000 packages available to date. While 
other packages exist that perform state estimation, they are 
often difficult to apply to new problems for a variety of 
reasons: 

• Limited sensor inputs. Robots are being equipped with 
an increasing number of sensors, and existing ROS 
packages require a lot of user effort to successfully 
integrate the data from all of them. 

• Limited to 2D estimation. For some unmanned ground 
vehicles (UGVs) operating in planar indoor 
environments, ROS packages that estimate the vehicle’s 
state in 2D are sufficient for the intended application. 
However, these packages are insufficient for estimating 
the state of platforms that operate in 3D, such as 
unmanned aerial vehicles (UAVs), unmanned 
underwater vehicles (UUVs), and UGVs operating 
outdoors. 

• Limited ROS message support. Sensor data in ROS 
often originates from hardware driver packages over 
which the user has no control. If a state estimation node 
does not support a given message type, the user must 
either modify the driver’s source or create an 
intermediary node to copy the message data into a 
supported message type. 

• Limited control over sensor data. Accurate state 
estimates often require only a subset of the available 
sensor messages because of faulty sensors or sensor 
drivers that fail to properly fill out covariance values. 
This requires users to modify the data messages, e.g., 
by artificially inflating covariances. 

We developed our robot_localization package from the 
ground up to overcome these limitations and be as general-



purpose as possible. It performs state estimation in 3D space, 
allows for an unlimited number of sensors, supports multiple 
standard ROS message types, and allows per-sensor control of 
which message fields are fused with the state estimate. 

III. EXTENDED KALMAN FILTER NODE 
We developed ekf_localization_node, an EKF 

implementation, as the first component of robot_localization. 
The robot_localization package will eventually contain 
multiple executables (in ROS nomenclature, nodes) to perform 
state estimation. These nodes will share the desirable properties 
described in Section II, but will differ in their mathematical 
approaches to state estimation. In this section, we describe the 
implementation details for ekf_localization_node.     

A. Extended Kalman Filter Algorithm 
The EKF formulation and algorithm are well-known [3, 4, 

5]. We detail them here to convey important implementation 
details. Our goal is to estimate the full 3D (6DOF) pose and 
velocity of a mobile robot over time. The process can be 
described as a nonlinear dynamic system, with 

 𝒙𝑘 = 𝑓(𝒙𝑘−1) + 𝒘𝑘−1 ,   (1) 

where 𝒙𝑘 is the robot’s system state (i.e., 3D pose) at time 
𝑘, f  is a nonlinear state transition function, and 𝒘𝑘−1  is the 
process noise, which is assumed to be normally distributed. 
Our 12-dimensional state vector, 𝒙, comprises the vehicle’s 3D 
pose, 3D orientation, and their respective velocities. Rotational 
values are expressed as Euler angles. Additionally, we receive 
measurements of the form 

 𝒛𝑘 = ℎ(𝒙𝑘) + 𝒗𝑘 ,   (2) 

where 𝒛𝑘  is the measurement at time 𝑘 , ℎ  is a nonlinear 
sensor model that maps the state into measurement space, and 
𝒗𝑘 is the normally distributed measurement noise.  

The first stage in the algorithm, shown as equations (3) and 
(4), is to carry out a prediction step that projects the current 
state estimate and error covariance forward in time: 

 𝒙�𝑘 = 𝑓(𝒙𝑘−1). (3) 

 𝑷�𝒌 = 𝑭𝑷𝑘−1𝑭𝑇 + 𝑸. (4) 

For our application, 𝑓  is a standard 3D kinematic model 
derived from Newtonian mechanics. The estimate error 
covariance, 𝑷, is projected via 𝑭, the Jacobian of 𝑓, and then 
perturbed by 𝑸, the process noise covariance.  

We then carry out a correction step in equations (5) through 
(7): 

 𝑲 = 𝑷�𝑘𝑯𝑇�𝑯𝑷�𝑘𝑯𝑇 + 𝑹�−1. (5) 

 𝒙𝒌 = 𝒙�𝑘 + 𝑲(𝒛 − 𝑯𝒙�𝒌). (6) 

 𝑷𝑘 = (𝑰 − 𝑲𝑯)𝑷�𝑘(𝑰 − 𝑲𝑯)𝑇 + 𝑲𝑹𝑲𝑇. (7) 

We calculate the Kalman gain using our observation 
matrix, 𝑯, our measurement covariance, 𝑹, and 𝑷�𝑘. We use the 
gain to update the state vector and covariance matrix. We 
employ the Joseph form covariance update equation [6] to 
promote filter stability by ensuring that 𝑷𝑘  remains positive 
semi-definite. 

The standard EKF formulation specifies that 𝑯 should be a 
Jacobian matrix of the observation model function ℎ . To 
support a broad array of sensors, we make the assumption that 
each sensor produces measurements of the state variables we 
are estimating. As such, 𝑯 is simply the identity matrix. A core 
feature of ekf_localization_node is that it allows for partial 
updates of the state vector, which is also a requirement of any 
future state estimation nodes that are added to 
robot_localization. This is critical for taking in sensor data that 
does not measure every variable in the state vector, which is 
nearly always the case. In practice, this can be accomplished 
through 𝑯. Specifically, when measuring only 𝑚 variables, 𝑯 
becomes an 𝑚 by 12 matrix of rank 𝑚, with its only nonzero 
values (in this case, ones) existing in the columns of the 
measured variables.  

Because the process noise covariance, 𝑸, can be difficult to 
tune for a given application [7], ekf_localization_node exposes 
this matrix as a parameter to users, allowing for an additional 
level of customization. 

IV. EXPERIMENTS 
We designed and executed two experiments to evaluate the 

performance of ekf_localization_node. Our test platform is a 
MobileRobots Pioneer 3 (Fig. 1). The robot is equipped with 
wheel encoders that provide raw odometry estimation. 
Additionally, we have mounted a sensor suite on the platform 
with two Microstrain 3DM-GX2 IMUs and two Garmin GPS 
18x units. The sensors are mounted on a custom rig that aids in 
magnetic interference reduction for the IMUs and increases 
signal quality for the GPS units. We have configured 
ekf_localization_node to take in roll, pitch, yaw, and their 
respective velocities from each of the IMUs, and x and yaw 
velocity from the wheel encoders. For each GPS, we define a 
transform that converts the robot’s world frame coordinates 
(i.e., the frame with its origin at the robot’s start position) to 
the GPS’s UTM coordinates, as 

   𝑻 =

⎣
⎢
⎢
⎡𝑐θ𝑐ψ 𝑐ψ𝑠Φ𝑠θ − 𝑐Φ𝑠ψ
𝑐θ𝑠ψ 𝑐Φ𝑐ψ + 𝑠Φ𝑠θ𝑠ψ

𝑐Φ𝑐ψ𝑠θ+ 𝑠θ𝑠ψ 𝑥UTM0

−𝑐ψ𝑠Φ + 𝑐Φ𝑠θ𝑠ψ 𝑦UTM0

−𝑠θ            𝑐θ𝑠Φ           
0            0             

            𝑐Φ𝑠θ             𝑧UTM0

              0                1 ⎦
⎥
⎥
⎤
 , (8) 

where Φ, θ, and ψ are the vehicle’s initial UTM-frame roll, 
pitch, and yaw, respectively. c and s designate the cosine and 
sine functions, respectively, and xUTM0

, yUTM0
, and zUTM0

 are the 
UTM coordinates of the first reported GPS position. At any 
subsequent time t, we transform the GPS measurement into the 
robot’s world coordinate frame, odom, by 



 �

𝑥odom
𝑦odom
𝑧odom

1
� = 𝑻−1 �

𝑥UTM𝑡
𝑦UTM𝑡
𝑧UTM𝑡

1

�. (9) 

We then configure ekf_localization_node to fuse the 
transformed position with the state estimate. This process is 
carried out for each GPS independently. 

We collected raw sensor data from the platform in the 
parking lot of the authors’ building. Its path is depicted in Fig. 
2. The experiment environment measures approximately 110 
meters from the robot’s origin to the most distant point 
traveled. The robot was joystick controlled and driven so that 
its final position was exactly where it started. The collection 
lasted approximately 777 seconds. The data was then played 
back through ROS’s rosbag utility, allowing us to run multiple 
experiments on the same collected dataset1. While the state 
was estimated in 3D space (i.e., taking into account roll and 
pitch and incorporating the GPS altitude measurements), we 
report our results in 2D, as the nearly planar environment made 
the reporting of 3D information superfluous (Section VI 
provides an example of ekf_localization_node applied to a 3D 
state estimation problem for a UAV). 

A. Loop Closure Accuracy 
For our first experiment, we are interested in the distance 

between the robot’s start and end positions, as reported by 
ekf_localization_node. Ideally, we would like the end position 
(x, y) values to be as close to the origin at (0, 0) as possible. 
We repeat the experiment in multiple ekf_localization_node 
sensor configurations: (1) dead reckoning via the platform’s 
odometry, (2) fused odometry with a single IMU, (3) fused 
odometry with two IMUs; (4) fused odometry with two IMUs 
and a single GPS, and (5) fused odometry with two IMUs and 
two GPS units.   

As previously mentioned, ekf_localization_node affords the 
ability to configure which variables from each of its sensors are 
actually fused in the final state estimate. We list the sensor 
configurations in Table I. Note that for these experiments, we 
hold each configuration constant. In reality, however, some 
configurations would likely change depending on the sensor 
package. See Section V for further discussion. 

The results are listed in Table II. For each sensor 
configuration, the loop closure error is reported for x and y 
position. Our experiment design is such that this error is simply 
ekf_localization_node’s last reported state estimate before the 
bag file playback stops. We also report the filter’s last 
estimated standard deviation values for x and y. This gives an 
indication of how closely the EKF’s error matches reality. 
Statistics are reported in the robot’s world coordinate frame (in 
keeping with ROS standards, we denote this frame odom). The 
robot’s starting orientation and origin are depicted in Fig. 2. 

We also present graphical depictions of the results in Fig. 2 
through Fig 7. In Fig. 2, we give the robot’s path as an average 
of the GPS tracks. This serves only as a visual guide and is not 
considered to be ground truth. In Fig. 3 through Fig. 7, we 

                                                           
1 The bag file generated from this experiment is available at 

http://www.cra.com/robot_localization_ias13.zip 

overlay the estimated paths on top of this visualization for 
reference purposes. It also showcases how the configurations in 
rows four and five of Table II (corresponding to Fig. 6 and Fig. 
7) improve upon the average GPS track.  

The results of the experiment largely follow intuition. Dead 
reckoning yields the worst performance, with the robot’s final 
reported position being more than 174 meters from the origin 
(Fig. 3). Our Pioneer’s wheel encoders are biased in such a 
way that straight lines get reported as mild right turns, leading 
to a highly inaccurate position estimate. Including one IMU 

 
Fig. 1: Our test platform is a Pioneer 3 with a custom sensor mounting rack. It 

has two IMUs and two GPS units. 

TABLE I.  SENSOR CONFIGURATIONS 

Sensor 
Configuration Vector 
0  =  false, 1  =  true 

x y z Φ θ ψ x' y' z' Φ' θ' ψ' 

Odometry 0 0 0 0 0 0 1 1 1 0 0 1 

IMU 1 0 0 0 1 1 1 0 0 0 1 1 1 

IMU 2 0 0 0 1 1 1 0 0 0 1 1 1 

GPS 1 1 1 1 0 0 0 0 0 0 0 0 0 

GPS 2 1 1 1 0 0 0 0 0 0 0 0 0 
 

TABLE II.  ERRORS FOR FIVE DIFFERENT SENSOR CONFIGURATIONS 

Sensor Set Loop Closure 
Error x, y (m) 

Estimate Std. 
Dev.  

x, y (m) 

Odometry (dead reckoning) 69.65, 160.33 593.09, 359.08 

Odometry + one IMU 10.23, 47.09 5.25, 5.25 

Odometry + two IMUs* 12.90, 40.72 5.23, 5.24 

Odometry + two IMUs* + one GPS 1.21, 0.26 0.64, 0.40 

Odometry + two IMUs* + two GPSs 0.79, 0.58 0.54, 0.34 
* IMU 2 failed after approximately 45% of the collection 



 
Fig. 2: The robot's path as a mean of the two raw GPS paths is shown in red. Its 

world coordinate frame is shown in green. 

 
Fig. 3: Output of ekf_localization_node (yellow) when fusing only raw 

odometry data. 

 
Fig. 4: Output of ekf_localization_node (cyan) when fusing data from 

odometry and a single IMU. 

 
Fig. 5: Output of ekf_localization_node (orange) when fusing data from 

odometry and two IMUs. Note that the second IMU stopped reporting data 
midway through the run. 

 
Fig. 6: Output of ekf_localization_node (blue) when fusing data from 

odometry, two IMUs, and one GPS. 

 
Fig. 7: Output of ekf_localization_node (green) when fusing data from 

odometry, two IMUs, and two GPS units.  
 

 
  



aids in correcting this problem, owing to the order-of-
magnitude improvement in the IMU’s yaw velocity error over 
that of the Pioneer’s odometry, as well as the fusion of absolute 
orientation (Fig. 4). However, the collection area contains 
many areas with strong electromagnetic interference, resulting 
in inaccurate headings being reported by the magnetometer. 
The addition of a second IMU improves the final position error 
only slightly, because it is subject to the same interference, and 
because it actually stopped reporting data halfway through the 
collection (Fig. 5). While normally a cause to repeat the 
experiment, this sensor failure serves as an example of why the 
fusion of multiple sensors is so powerful, as the system can 
more gracefully cope with faulty or infrequent sensor data.  

We can further refine our estimate through the inclusion of 
a single GPS (Fig. 6). This aids in constraining the effects of 
both the odometry’s inaccurate linear velocity estimates and 
eliminates the effect of the poor heading estimate resulting 
from IMU interference. Adding a second GPS provides a less 
drastic improvement in the final position error, but showcases 
the ability of ekf_localization_node to successfully fuse data 
from a large number of sensor inputs (Fig. 7). 

B. Infrequent GPS  
Many robots receive infrequent absolute position 

measurements and must maintain a state estimate when these 
signals are absent. For our second experiment, we want to 
evaluate the performance of the filter when GPS signals arrive 
infrequently. We run the experiment with the same sensor 
configuration as in row four of Table II, i.e., with odometry, 
both IMUs, and one GPS. However, we filter the collection log 
file such that GPS data is only available once every 120 
seconds. Our aim is to determine how gracefully the filter 
handles the fusion of sensor data that varies greatly from its 
current state estimate.  

The results are shown in Fig. 8. The locations at which GPS 
fixes occur are displayed on the map, and result in noticeable 
instantaneous position changes. These jumps clearly pull the 
state estimate towards the GPS track, but the Kalman gain 
gives some weight to the current state estimate, resulting in the 
new position being in between the current state and 
measurement. Despite the large difference between state 
estimate and measurement, the filter’s covariance matrix 
retains its stability, and the x and y variance values decrease 
considerably. At the end of the run, the vehicle’s loop closure 
(x, y) absolute error is (12.06, 0.52) meters. 

V. DISCUSSION 
Referring again to the first row of Table II (dead 

reckoning), it is clear that the estimate variance for x and y was 
very large. For this particular test, the condition number of the 
covariance matrix grew rapidly, indicating filter instability. 
This is due in part to the sensor’s configuration. The strong 
correlation between yaw and x and y position means that, 
without an absolute measurement of yaw or (x, y), the errors on 
these values will grow rapidly. Clearly, this problem is solved 
by the inclusion of IMUs, which provide absolute yaw 
measurements.  

The estimated standard deviations of the (x, y) positions for 
rows two and three in Table II are much smaller than the true 

position estimation errors. This is partially due to both the 
Pioneer odometry and IMU data being noisier than its 
covariance values reported. We also did not tune the process 
noise covariance matrix, 𝑸 [7]. 

It is worth noting that despite the fact that the odometry 
only truly measures x and yaw velocity, we can infer more 
information. The platform is not going to obtain any 
instantaneous z or y velocity due to platform constraints, i.e., it 
cannot fly and is nonholonomic. We can therefore fuse the zero 
values in those data fields with our estimate, providing that the 
measurement’s covariances are set appropriately (Table I). In 
general, if the measurement of a quantity is implied through 
kinematic constraints, it is best to treat that quantity as a 
measured value. 

Although our experiments utilized only proprioceptive 
sensors, the design of our software is such that inputs from 
exteroceptive sensors such as laser scanners or cameras could 
be used as well, provided that they produce supported ROS 
message types. For example, the iterative closest point (ICP) 
algorithm [8] could be used with data from an RGBD sensor 

 
(a) 

 
(b) 

 Fig. 8: (a) Output of ekf_localization_node (white) when fusing odometry, 
IMU, and infrequently reported GPS data. GPS fixes occur at the green circles. 

(b) x and y position variances for the same run. Green circles denote the 
reception of GPS data.  

 



such as the Microsoft Kinect [9] to generate an additional 
source of odometry [10]. 

While the number of sensor permutations possible for this 
experiment was not large, the sensor data customization 
parameters for ekf_localization_node (and future nodes in 
robot_localization) can yield a much larger set of possible 
configurations. For example, one of our IMUs is known to 
have a faulty gyroscope. In that case, we can use that IMU to 
report only orientation and use the second IMU to give us both 
orientation and orientation velocity. This kind of fine-grained 
control is useful for dealing with known faulty sensors and for 
troubleshooting. 

VI. CONCLUSION AND FUTURE WORK 
While this work focused on a robot operating in a near-

planar environment, we have also successfully applied 
ekf_localization_node across multiple projects involving both 
ground and aerial robots [11]. In particular, we have integrated 
the software with a Parrot AR.Drone 2.0 quadcopter via the 
ardrone_autonomy ROS package [12] (Fig. 10). The drone has 
camera-based velocity sensing, camera- and barometry-based 
altitude sensing, an IMU, and GPS.  

We plan to improve both ekf_localization_node and 
robot_localization in a number of ways: 

• Covariance override. Some ROS nodes for specific 
robot platforms or sensors assign arbitrary values for 
certain covariance matrix entries so as to signify that the 
quantity in question is not measured or is not 
trustworthy. However, as discussed in Section V, users 
may wish to incorporate sensor data for values that 
aren’t actually measured by the sensor. Currently, the 
sensor data preprocessing logic, common to all nodes in 
robot_localization, assigns a small variance value to 
any sensor that is fused with a variance of zero. While 
this allows the measurement to be fused without 
breaking the filter, the values should be 
parameterizable. 

• Support for linear acceleration. We do not currently 
fuse linear acceleration in our state estimate or account 
for it in our kinematic model. Doing so will further 
increase filter accuracy. 

• Additional state estimation nodes. The 
robot_localization package is meant to contain multiple 
nodes for carrying out state estimation. We plan to add 
new nodes in the future, such as an unscented Kalman 
filter [13] node and a particle filter [14] node. 

In this paper, we introduced a generalized extended Kalman 
filter node, ekf_localization_node, for our robot_localization 
ROS package. Its support for multiple sensors and high level of 
customizability make it well suited to the problem of state 
estimation for a variety of robot platforms. It is the authors’ 
hope that robot_localization will benefit from the feedback and 
contributions of the ROS community. 
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 Fig. 9: (a) Parrot AR.Drone 2.0 quadcopter, (b) 3D path flown by the 
AR.Drone and estsimated by ekf_localization_node. 
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