
 Protocol specification
for

SCHUNK Five Finger Hand

by:

FZI Forschungszentrum Informatik

Stiftung des Bürgerlichen Rechts

Haid-und-Neue-Str.- 10-17

76131 Karlsruhe

S5FH-Protocol Specification V 1.0 2014-03-19

S5FH – Protocol specification
This document gives an overview of the software protocol used to control the SCHUNK Five
Finger Hand. We provide this information “as is” and in the hope it will be usefull to you, however
the protocol might change or behave differently so we are not liable for any damage resulting from
using this information. Please always monitor the currents when developing software for the five
finger hand. The protocol information is based on the Firmware v1.1 provided by MeCoVis.

Version History

version date author changes reviewed

0.1 10.02.14 Georg Heppner Created initial version Lars Pfotzer

0.2 19.03.14 Georg Heppner Reviewed data and filled in missing
commands

Lars Pfotzer

0.3 19.03.14 Georg Heppner Minor changes

0.4 19.03.14 Arne Rönnau Changes picture & minor changes

1.0 30.09.14 Georg Heppner Finalized the document for release

Interface Settings

Default settings used by the controller:

• Baudrate: 921600
• Parity : None
• Data Bytes: 8
• Stop Bits : 1

The RS485 serial interface is used as a full duplex point to point connection.

Data Alignment

All packets are send with little endian encoding.
Note: All values given in this specification (except raw data examples) are written in standard
hexadecimal or decimal format, see the raw byte examples to check what you are sending.

Packet Structure

The S5FH is controlled via RS485 serial interface. Packets consist of raw data, synchronization
bytes, an address and checksum information. Each packet starts with two synchronization bytes
SYNC1 (0x4C) and SYNC2 (0xAA). The following index should be continuously incremented by
the master to map incoming responses to send requests. The address byte encodes the meaning of
the following data, length gives the number of data packets. The checksums CHECK1 and
CHECK2 verify the data integrity of the raw data fields. CHECK1 is the byte sum of all data bytes.
CHECK2 the xor of all data bytes.

1 / 8

S5FH-Protocol Specification V 1.0 2014-03-19

Sync1 Sync2

Index Add Length
Data Data Data Data Data Data Data Data Data Data

...
Check1 Check2

Checksum Calculation:
 foreach (byte value in packet.Data)
 {
 checkSum1 += value;
 checkSum2 ^= value;
 }

Address Constants

Address Name Description

0x00 GetControlFeedback Request the current position and current (of a specific channel) to
be sent

0x01 SetControlCommand Set the target position of a specific channel

0x02 GetControlFeedback
AllChannels

Requests the current position and current of all channels to be
sent

0x03 SetControlCommand
AllChannels

Sets the target position of all channels simultaneously

0x04 GetPositionSetting Request the slave to transmit the current position controller
settings

0x05 SetPositionSetting Set the position controller settings

0x06 GetCurrentSettings Request the slave to transmit the current motor current controller
settings

0x07 SetCurrentSettings Set the motor current controller settings

0x08 GetControllerState Unknown, but probably returns the state of the main controller

0x09 SetControllerState Activate, deactivate and reset the main controller circuit

0x0A GetEncoderValues Request the slave to transmit the current encoder settings

0x0B SetEncoderValues Set the encoder settings to given values

0x0C GetFirmwareInfo Request the slave to transmit firmware information

Abbreviations

In the following sections some values will be represented by placeholders:

• 0xNN = Index (counted up by the master)

• 0xSS = Checksum value (calculated out of raw data)

• 0xTT = Value calculated from channel

2 / 8

S5FH-Protocol Specification V 1.0 2014-03-19

Channel Selection

The address field is used for both, encoding the meaning of a command and its recipient. The
channel number (the number of the motor to control) is given in the upper nibble of the address
byte.

Address = Address Constant | (channel << 4)

Data Length

Although the length field should specify the number of bytes following, the package length of
commands sent to the controller (PC -> hand) are always 40 Byte. Returning packages always have
a length of 64 Bytes and are padded with zeros.

SetControllerState - S5FH ControllerState

To send a control command a number of controller state variables have to be sent. The controller
state enables control of the motors on a very low level. This command is explained first as it has to
be used to enable or disable the controllers. The data structure is as follows:

0x4C 0xAA
Index 0x09 0x0C

pwm_fault pwm_otw pwm_reset pwm_active pos_ctrl
cur_ctrl

Check1 Check2

• pwm_fault
0x001F → Reset of controller faults (only used internally)

• pwm_otw
0x001F → Reset of controller faults from temperature warnings (over temperature waring)

• pwm_reset
Reset pwm generation in the motor controller. 0X0200 is used as a special value to turn on
the 12V supply driver.
0x0200 → Enable +12V supply driver

• pwm_active
Currently unused, should be activated like pwm_reset.

• 0X0200 is used as a special value to turn on the 12V supply driver.
0x0200 → Enable +12V supply driver

• pos_ctrl
0x0001 → Enable position controller

• cur_ctrl
0x0001 → Enable current controller

•
Note: Remember that all values have to be transmitted as little endian (intel architecture)
(Example a PWM Fault Value of 0x001F will be transmitted as:
0x4C 0xAA 0xNN 0x09 0x0C 0x1F 0x00 …..)

3 / 8

S5FH-Protocol Specification V 1.0 2014-03-19

Activating all channels:
When activating all channels (i.e all fingers) the packet should be send incrementally in three
messages leaving 2ms delay between each packet. While the first contains pwm_fault and
pwm_otw, the second contains additionally pwm_reset and pwm_active, the last contains
additionally position and current control. The exact messages send would be:

 0x4C 0xAA 0xNN 0x09 0x0C 0x1F 0x00 0x1F 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xSS 0xSS
 <2ms delay>
 0x4C 0xAA 0xNN 0x09 0x0C 0x1F 0x00 0x1F 0x00 0x00 0x02 0x00 0x02 0x00 0x00 0x00 0x00 0xSS 0xSS
 <2ms delay>
 0x4C 0xAA 0xNN 0x09 0x0C 0x1F 0x00 0x1F 0x00 0x00 0x02 0x00 0x02 0x01 0x00 0x01 0x00 0xSS 0xSS
 <2ms delay>

NOTE: The 2ms delay are used to give the supply drivers time to settle.

Activating individual channels
When activating individual channels one packet can be send (instead of the three individual ones).
If any finger was already activated before, the control values stay the same, except for pwm_reset
and pwm_active which are activated by an additional Bit-Flag

 enableMask = (1 << channel)
 pwm_reset = (0x0200 | (enableMask & 0x01FF));

 pwm_active = (0x0200 | (enableMask & 0x01FF));

This will result in the following packet:

 0x4C 0xAA 0xNN 0x09 0x0C 0x1F 0x00 0x1F 0x00 0xBB 0x0T 0xTT 0x0B 0x01 0x00 0x01 0x00 0xCC 0xSS

Deactivating all channels
For deactivation a ControllerStatemessage with just pwm_fault and pwm_otw is send (setting the
controllers to 0):

 0x4C 0xAA 0xNN 0x09 0x0C 0x1F 0x00 0x1F 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xCC 0xSS

Deactivating individual channels
Deactivating individual channels is done in the same way as activating them but setting the
enableMask bit to 0 instead of 1.

NOTE: At activation of channels we currently use a two step approach where we first reset all the
faults by writing to pwm_fault and pwm_otw and activate the driver units by writing the bitmask to
pwm_reset and pwm_active. pwm_reset is an low active signal resetting the pwm generators. After
a very short delay we activate the position and current controller. If the position and current
controllers are activated together with the pwm_reset a jumping behavior of the fingers may occur
possible due to internal integration of values.

4 / 8

S5FH-Protocol Specification V 1.0 2014-03-19

GetControlFeedback

0x4C 0xAA
Index 0xT0 Length
0x00 0x00 0x00 0x00 …. ... 0x00 0x00 0x00 0x00

Check1 Check2
To request control feedback the GetControlFeedback command is send together with the channel to
be requested shifted to the upper nibble of the address byte:

Address = 0x00 | (channel << 4)
A GetControlFeedback for channel 6 would therefore result in the message:

 0x4C 0xAA 0xNN 0x60 0x28 0x00 0x00 …. 0x00 0x00 0x00 0x00 0xSS 0xSS

The control feedback consists of:
• 32bit signed number (int) for the position
• 16bit signed number (short) for the motor current.

SetControlCommand

Sync1 Sync2
Index 0x01 0x04

Target Position
Check1 Check2

The control command consists of a single 32 bit signed integer indicating the target position of the
controller given in encoder ticks.
A command setting the Goal of the controllers to the value 3523 would look like this:

 0x4C 0xAA 0xNN 0x01 0x04 0xC3 0x0D 0x00 0x00 0xCC 0xCC

GetControlFeedbackAllChannels

0x4C 0xAA
Index 0x02 Length
0x00 0x00 0x00 0x00 …. ... 0x00 0x00 0x00 0x00

Check1 Check2
This command requests the feedback for all channels at once. The Feedback will first contain all the
positions (32bit) and all the currents afterward:

0x4C 0xAA
Index 0x02 0x40

Pos 0 Pos 1 Pos 2
Pos 2 Pos 3 Pos 4

Pos 5 Pos 6 Pos 7
Pos 7 Pos 8 Current 0 Current 1

Current 2 Current 3 Current 4 Current 5 Current 6
Current 7 Current 8

Check1 Check2

5 / 8

S5FH-Protocol Specification V 1.0 2014-03-19

The control feedback consists of:
• 32bit signed number (int) for the position
• 16bit signed number (short) for the motor current.

SetControlCommandAllChannels

0x4C 0xAA
Index 0x03 0x28

Pos 0 Pos 1 Pos 2
Pos 2 Pos 3 Pos 4

Pos 5 Pos 6 Pos 7
Pos 7 Pos 8 Pos 9

Check1 Check2
This commands sends the target positions of all channels at once. As a result the same
response as for the command GetControllerFeedbackAllChannels is sent. All positions are
32bit signed numbers (int).

GetPositionSettings

0x4C 0xAA
Index 0xT4 Length
0x00 0x00 0x00 0x00 …. ... 0x00 0x00 0x00 0x00

Check1 Check2
To read out the current position settings the same Syntax as GetControlFeedback is used but with
the address value of GetPositionSetting (0x04). The response will contain the settings in the same
order as the SetPositionSettings packet.

SetPositionSetting

0x4C 0xAA
Index 0xT5 0x28

wmn wmx dwmx
dwmx ky dt

imn imx kp
kp ki kd

Check1 Check2
All values are given as a 4 byte single precision float value. The meaning of these values
can be taken from the MeCoVis S5FH controllers user guide.

The position controller evaluates the position difference to generate a current target for the
cascaded current controller. The error signal is generated in ticks. The controlled unit is
[mA]

• wmn : Reference signal minimum value
Minimum allowed position input [encoder ticks]

• wmx : Reference signal maximum value
Maximum allowed position input [encoder ticks]

6 / 8

S5FH-Protocol Specification V 1.0 2014-03-19

• dwmx : Reference signal delta maximum threshold
Maximum Allowed tick difference -> Max Speed of the finger in [ticks]

• ky : Measurement scaling
Feedback scaling. Set to 1 to work in ticks (should not be changed)

• dt : Time base of controller
Time base of the position controller (should not be changed)

• imn : Integral windup minimum value
Minimum allowed value for the integrator [mA*tick/S]

• imx : Integral windup maximum value
Maximum allowed value for the integrator [mA*tick/S]

• kp : Proportional gain
• ki : Integral gain
• kd : Differential gain

GetCurrentSettings

0x4C 0xAA
Index 0xT6 Length
0x00 0x00 0x00 0x00 …. ... 0x00 0x00 0x00 0x00

Check1 Check2
To read out the current motor-current settings the same Syntax as GetControlFeedback is used but
with the address value of GetCurrentSetting (0x06).The response will contain the settings in the
same order as the SetCurrentSettings packet.

SetCurrentSettings

0x4C 0xAA
Index 0xT7 0x28

wmn wmx ky
ky dt imn

imx kp ki
ki umn umx

Check1 Check2
All values are given as a 4 byte single precision float value. The meaning of these values
can be taken from the Mecovis S5FH controllers user guide.

The current controller uses the current control values generated by the position controller
to generate a pwm signal for the driver units. The Error signal is calculated in [mA] the
controlled unit are duty cycles

• wmn : Reference signal minimum value (reference is generated by position
controller)
Minimum allowed current value [mA]

• wmx : Reference signal maximum value (reference is generated by position
controller) Maximum allowed current value [mA]

• ky : measurement scaling
Feedback scaling. Do not change to work in [mA]

7 / 8

S5FH-Protocol Specification V 1.0 2014-03-19

• dt : time base of controller
Should not be changed. The current controller needs to work faster than the
position controller

• imn : Integral windup minimum value
Minimum allowed value for the integrator [1/(mA*s)]

• imx : Integral windup maximum value
Maximum allowed value for the integrator [1/(mA*s)]

• kp : proportional gain
• ki : Integral gain
• umn : Output limiter min

The output is the duty cycle of the driver units -> -255 - 0
• umx : Output limiter max

The output is the duty cycle of the driver units -> 0-255

GetControllerState

0x4C 0xAA
Index 0x08 Length
0x00 0x00 0x00 0x00 …. ... 0x00 0x00 0x00 0x00

Check1 Check2

GetEncoderValues

0x4C 0xAA
Index 0x0A Length
0x00 0x00 0x00 0x00 …. ... 0x00 0x00 0x00 0x00

Check1 Check2
Requests the current encoder settings (scaling of the encoders)

SetEncoderValues

0x4C 0xAA
Index 0x0B 0x28

Encoder 0 Encoder 1 Encoder 2
Encoder 2 Encoder 3 Encoder 4

Encoder 5 Encoder 6 Encoder 7
Encoder 7 Encoder 8 Encoder 9

Check1 Check2
Sets the encoder values (scaling) to given values for each of the motors.
Usually this should not be necessary.

GetFirmwareInfo

0x4C 0xAA
Index 0x0C Length
0x00 0x00 0x00 0x00

Check1 Check2
Requests the slave to send firmware information.

8 / 8

S5FH-Protocol Specification V 1.0 2014-03-19

Firmware information consists of:
• 4 byte char values in UTF8 encoding (always S5FH)
• 16 bit (short) major version number
• 16 bit (short) minor version number
• 48 byte string in in UTF8 encoding

9 / 8

	Protocol specification for SCHUNK Five Finger Hand
	S5FH – Protocol specification
	Version History
	Interface Settings
	Data Alignment
	Packet Structure
	Address Constants
	Abbreviations
	Channel Selection
	Data Length
	SetControllerState - S5FH ControllerState
	GetControlFeedback
	SetControlCommand
	GetControlFeedbackAllChannels
	SetControlCommandAllChannels
	GetPositionSettings
	SetPositionSetting
	GetCurrentSettings
	SetCurrentSettings
	GetControllerState
	GetEncoderValues
	SetEncoderValues
	GetFirmwareInfo

