
The Cram Plan Language — Plan-based
Control of Autonomous Robots

Lorenz Mösenlechner (moesenle@in.tum.de)

Intelligent Autonomous Systems Group
Technische Universität München

November 4, 2010



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Outline

1. Motivation

2. The Language

3. Reasoning about Plan Execution

4. Outlook

5. Lab session

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Motivation

I Goal: perform complex
activity in a human
household

I Implementing reliable robot
control programs is hard

I Complex failure handling is
required

I Tasks synchronization,
parallel execution, resource
management, ...

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Cognitive Robot Abstract Machine

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

The CRAM Core

Goals/
Reasoning
on Plans

Designators
Execution

trace
Process
Modules

Knowrob . . .

CRAM Language

Common Lisp

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

High-Level Robot Control

jTask executionj
I Parallel

I Synchronization

I Robust and flexible

I Failure handling

jRequirements for the Languagej
I Expressive

I Easy to use

⇒ CPL is a Domain Specific Language fulfilling these
requirements

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

High-Level Robot Control

jTask executionj
I Parallel

I Synchronization

I Robust and flexible

I Failure handling

jRequirements for the Languagej
I Expressive

I Easy to use

⇒ CPL is a Domain Specific Language fulfilling these
requirements

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

High-Level Robot Control

jTask executionj
I Parallel

I Synchronization

I Robust and flexible

I Failure handling

jRequirements for the Languagej
I Expressive

I Easy to use

⇒ CPL is a Domain Specific Language fulfilling these
requirements

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Outline

1. Motivation

2. The Language

3. Reasoning about Plan Execution

4. Outlook

5. Lab session

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Overview of the CRAM Language

I Implemented in Common Lisp.

I Compiles down to multithreaded programs.

I Programs are in native machine code.

I Provides control structures for parallel and sequential
evaluation of expressions.

I Reactive control programs.

I Exception handling, also across threads.

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Example: Picking up an object

Example

(let* ((obj-pose (find-object obj))

(pre-grasp-pos (calculate-pre-grasp obj-pose))

(grasp-vector (cl-transforms:make-3d-vector 0 0 -0.1))

(lift-vector (cl-transforms:make-3d-vector 0 0 0.1)))

(open-gripper side)

(take-collision-map)

(with-failure-handling

((no-ik-solution (e)

(move-to-different-place)

(retry))

(link-in-collision (e)

(setf pre-grasp-pos (new-pre-grasp))

(retry))

(trajectory-controller-failed (e)

(retry)))

(move-arm-to-point side pre-grasp-pos)))

...)

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Basic Lisp Syntax

I Parenthesis around complete expression:
foo(bar, 123) ⇒ (foo bar 123)

I Prefix notation for operators:
1 + 2 + 3 + 4 + 5 ⇒ (+ 1 2 3 4 5)

I Expressions in “blocks”:

with open("foo.txt", "w") as f:

f.write("bar\n")

⇓
(with-open-file (f "foo.txt" :direction :output)

(format f "bar~%"))

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Overview CRAM Language

I Fluents

I Sequential evaluation

I Parallel evaluation

I Exceptions and failure handling

I Task suspension

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Fluents

I Fluents are objects that contain a value and provide
synchronized access.

I Create with (make-fluent :name ’fl :value 1)

I Wait (block thread) until a fluent becomes true:
(wait-for fl)

I Execute whenever a fluent becomes true:
(whenever fl)

I Can be combined to fluent networks that update their value
when one fluent changes its value.
(wait-for (> x 20))

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Fluent networks

>

>

<

<cup−handle−orientation(ax, ay, az)

angle−distance

position−distance

hand−position(x, y, z)

cup−handle−position(x, y, z)

hand−orientation(ax, ay, az)

angle−tolerance

position−tolerance

min−hand−force

cup−gripped?

left−finger−hand−force

right−finger−hand−force

and

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

CRAM Control Flow

jSequential Evaluationj
I Execute expressions sequentially:

(seq

(do a)

(do b)

I Execute expressions sequentially until one succeeds:

(try-in-order

(do a)

(do b)

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

CRAM Control Flow

jSequential Evaluationj
I Execute expressions sequentially:

(seq

(do a)

(do b)

I Execute expressions sequentially until one succeeds:

(try-in-order

(do a)

(do b)

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

CRAM Control Flow

jParallel Evaluationj
I Execute in parallel, succeed when all succeed, fail if one fails:

(par ...)

I Execute in parallel, succeed when one succeeds, fail if one fails:

(pursue ...)

I Try in parallel, succeed when one succeeds, fail if all fail:
(try-all ...)

Examples:

(par
(open-right-gripper)
(open-left-gripper)

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

CRAM Control Flow

jParallel Evaluationj
I Execute in parallel, succeed when all succeed, fail if one fails:

(par ...)

I Execute in parallel, succeed when one succeeds, fail if one fails:

(pursue ...)

I Try in parallel, succeed when one succeeds, fail if all fail:
(try-all ...)

Examples:

(par
(open-right-gripper)
(open-left-gripper)

(pursue
(wait-for (< (distance robot p) 5))
(update-nav-cmd x)

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

CRAM Control Flow

jParallel Evaluationj
I Execute in parallel, succeed when all succeed, fail if one fails:

(par ...)

I Execute in parallel, succeed when one succeeds, fail if one fails:

(pursue ...)

I Try in parallel, succeed when one succeeds, fail if all fail:
(try-all ...)

Examples:

(par
(open-right-gripper)
(open-left-gripper)

(pursue
(wait-for (< (distance robot p) 5))
(update-nav-cmd x)

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Failure Handling

I Create exception class:
(define-condition nav-failed (plan-error) ())

I Throw exception: (fail ’nav-failed)
I Handle exceptions:

(with-failure-handling
((obj-not-reachable (e)

(move-to-better-location)
(retry)))

(pursue
(seq
(sleep timeout)
(fail timeout)

(grasp-obj obj)
I Execute expressions even on exceptions (finally):

(unwind-protect
(grasp-object)

(move-arms-to-save-position))

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Failure Handling

I Create exception class:
(define-condition nav-failed (plan-error) ())

I Throw exception: (fail ’nav-failed)

I Handle exceptions:
(with-failure-handling

((obj-not-reachable (e)
(move-to-better-location)
(retry)))

(pursue
(seq
(sleep timeout)
(fail timeout)

(grasp-obj obj)
I Execute expressions even on exceptions (finally):

(unwind-protect
(grasp-object)

(move-arms-to-save-position))

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Failure Handling

I Create exception class:
(define-condition nav-failed (plan-error) ())

I Throw exception: (fail ’nav-failed)
I Handle exceptions:

(with-failure-handling
((obj-not-reachable (e)

(move-to-better-location)
(retry)))

(pursue
(seq
(sleep timeout)
(fail timeout)

(grasp-obj obj)

I Execute expressions even on exceptions (finally):
(unwind-protect

(grasp-object)
(move-arms-to-save-position))

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Failure Handling

I Create exception class:
(define-condition nav-failed (plan-error) ())

I Throw exception: (fail ’nav-failed)
I Handle exceptions:

(with-failure-handling
((obj-not-reachable (e)

(move-to-better-location)
(retry)))

(pursue
(seq
(sleep timeout)
(fail timeout)

(grasp-obj obj)
I Execute expressions even on exceptions (finally):

(unwind-protect
(grasp-object)

(move-arms-to-save-position))

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Tagging, Suspension, Protection forms

I Name sub-expressions and bind them to variables in the
current lexical scope:

(:tag var
(move-to x y)

I Execute expressions with a parallel task suspended:

(pursue
(whenever c

(with-task-suspended nav
...))

(:tag nav
(move-to x y)

I Execute code just before a task is suspended:

(suspend-protect
(move-to x y)

(stop-motors)

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Tagging, Suspension, Protection forms

I Name sub-expressions and bind them to variables in the
current lexical scope: (:tag var ...)

I Execute expressions with a parallel task suspended:

(pursue
(whenever c

(with-task-suspended nav
...))

(:tag nav
(move-to x y)

I Execute code just before a task is suspended:

(suspend-protect
(move-to x y)

(stop-motors)

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Tagging, Suspension, Protection forms

I Name sub-expressions and bind them to variables in the
current lexical scope: (:tag var ...)

I Execute expressions with a parallel task suspended:

(pursue
(whenever c

(with-task-suspended nav
...))

(:tag nav
(move-to x y)

I Execute code just before a task is suspended:

(suspend-protect
(move-to x y)

(stop-motors)

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Outline

1. Motivation

2. The Language

3. Reasoning about Plan Execution

4. Outlook

5. Lab session

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Reasoning based on Execution Traces

I Why did you leave the cup
on the table while clearing
it?

I Where did you stand while
performing a task?

I What did you see?

I How did you move?

I How did you move the arm
while grasping the bottle?

I . . .

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Our approach

1. Record execution trace

I Belief state
I State of plan execution, tasks, activation, deactivation, results

2. Provide an interface to the execution trace through a
first-order representation

I Symbolic annotations of plans
I Causal relations through plan hierarchy
I Symbolic representation of objects in plans

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Our approach

1. Record execution trace
I Belief state
I State of plan execution, tasks, activation, deactivation, results

2. Provide an interface to the execution trace through a
first-order representation

I Symbolic annotations of plans
I Causal relations through plan hierarchy
I Symbolic representation of objects in plans

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Our approach

1. Record execution trace
I Belief state
I State of plan execution, tasks, activation, deactivation, results

2. Provide an interface to the execution trace through a
first-order representation

I Symbolic annotations of plans
I Causal relations through plan hierarchy
I Symbolic representation of objects in plans

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Recording of Execution Trace

Achieve(Loc(bottle, table))

Achieve(ObjectOpened(fridge))

Achieve(ObjInHand(bottle))

Achieve(ObjectClosed(fridge))

Achieve(ObjPlacedAt(bottle, table))

t

Action:

I Move to fridge

Log:

I Achieve(Loc(bottle,table)) running

I Achieve(Loc(Robot, l)) running

I Trajectory of robot

I . . .

Action:

I Open fridge

Log:

I Achieve(Loc(Robot, l)) succeeded

I Achieve(ObjectOpened(fridge))
running

I Trajectory of arm

I . . .

Action:

I Grasp the bottle

Log:

I Achieve(ObjectOpended(fridge))
succeeded

I Achieve(ObjInHand(bottle)) running

I Perceived properties of bottle (object
designator)

I . . .

Action:

I Close the fridge

Log:

I . . .

Action:

I Put down bottle

Log:

I . . .

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Recording of Execution Trace

Achieve(Loc(bottle, table))

Achieve(ObjectOpened(fridge))

Achieve(ObjInHand(bottle))

Achieve(ObjectClosed(fridge))

Achieve(ObjPlacedAt(bottle, table))

t

Action:

I Move to fridge

Log:

I Achieve(Loc(bottle,table)) running

I Achieve(Loc(Robot, l)) running

I Trajectory of robot

I . . .

Action:

I Open fridge

Log:

I Achieve(Loc(Robot, l)) succeeded

I Achieve(ObjectOpened(fridge))
running

I Trajectory of arm

I . . .

Action:

I Grasp the bottle

Log:

I Achieve(ObjectOpended(fridge))
succeeded

I Achieve(ObjInHand(bottle)) running

I Perceived properties of bottle (object
designator)

I . . .

Action:

I Close the fridge

Log:

I . . .

Action:

I Put down bottle

Log:

I . . .

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Recording of Execution Trace

Achieve(Loc(bottle, table))

Achieve(ObjectOpened(fridge))

Achieve(ObjInHand(bottle))

Achieve(ObjectClosed(fridge))

Achieve(ObjPlacedAt(bottle, table))

t

Action:

I Move to fridge

Log:

I Achieve(Loc(bottle,table)) running

I Achieve(Loc(Robot, l)) running

I Trajectory of robot

I . . .

Action:

I Open fridge

Log:

I Achieve(Loc(Robot, l)) succeeded

I Achieve(ObjectOpened(fridge))
running

I Trajectory of arm

I . . .

Action:

I Grasp the bottle

Log:

I Achieve(ObjectOpended(fridge))
succeeded

I Achieve(ObjInHand(bottle)) running

I Perceived properties of bottle (object
designator)

I . . .

Action:

I Close the fridge

Log:

I . . .

Action:

I Put down bottle

Log:

I . . .

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Recording of Execution Trace

Achieve(Loc(bottle, table))

Achieve(ObjectOpened(fridge))

Achieve(ObjInHand(bottle))

Achieve(ObjectClosed(fridge))

Achieve(ObjPlacedAt(bottle, table))

t

Action:

I Move to fridge

Log:

I Achieve(Loc(bottle,table)) running

I Achieve(Loc(Robot, l)) running

I Trajectory of robot

I . . .

Action:

I Open fridge

Log:

I Achieve(Loc(Robot, l)) succeeded

I Achieve(ObjectOpened(fridge))
running

I Trajectory of arm

I . . .

Action:

I Grasp the bottle

Log:

I Achieve(ObjectOpended(fridge))
succeeded

I Achieve(ObjInHand(bottle)) running

I Perceived properties of bottle (object
designator)

I . . .

Action:

I Close the fridge

Log:

I . . .

Action:

I Put down bottle

Log:

I . . .

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Recording of Execution Trace

Achieve(Loc(bottle, table))

Achieve(ObjectOpened(fridge))

Achieve(ObjInHand(bottle))

Achieve(ObjectClosed(fridge))

Achieve(ObjPlacedAt(bottle, table))

t

Action:

I Move to fridge

Log:

I Achieve(Loc(bottle,table)) running

I Achieve(Loc(Robot, l)) running

I Trajectory of robot

I . . .

Action:

I Open fridge

Log:

I Achieve(Loc(Robot, l)) succeeded

I Achieve(ObjectOpened(fridge))
running

I Trajectory of arm

I . . .

Action:

I Grasp the bottle

Log:

I Achieve(ObjectOpended(fridge))
succeeded

I Achieve(ObjInHand(bottle)) running

I Perceived properties of bottle (object
designator)

I . . .

Action:

I Close the fridge

Log:

I . . .

Action:

I Put down bottle

Log:

I . . .

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Recording of Execution Trace

Achieve(Loc(bottle, table))

Achieve(ObjectOpened(fridge))

Achieve(ObjInHand(bottle))

Achieve(ObjectClosed(fridge))

Achieve(ObjPlacedAt(bottle, table))

t

Action:

I Move to fridge

Log:

I Achieve(Loc(bottle,table)) running

I Achieve(Loc(Robot, l)) running

I Trajectory of robot

I . . .

Action:

I Open fridge

Log:

I Achieve(Loc(Robot, l)) succeeded

I Achieve(ObjectOpened(fridge))
running

I Trajectory of arm

I . . .

Action:

I Grasp the bottle

Log:

I Achieve(ObjectOpended(fridge))
succeeded

I Achieve(ObjInHand(bottle)) running

I Perceived properties of bottle (object
designator)

I . . .

Action:

I Close the fridge

Log:

I . . .

Action:

I Put down bottle

Log:

I . . .

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Recording of Execution Trace

Achieve(Loc(bottle, table))

Achieve(ObjectOpened(fridge))

Achieve(ObjInHand(bottle))

Achieve(ObjectClosed(fridge))

Achieve(ObjPlacedAt(bottle, table))

t

Action:

I Move to fridge

Log:

I Achieve(Loc(bottle,table)) running

I Achieve(Loc(Robot, l)) running

I Trajectory of robot

I . . .

Action:

I Open fridge

Log:

I Achieve(Loc(Robot, l)) succeeded

I Achieve(ObjectOpened(fridge))
running

I Trajectory of arm

I . . .

Action:

I Grasp the bottle

Log:

I Achieve(ObjectOpended(fridge))
succeeded

I Achieve(ObjInHand(bottle)) running

I Perceived properties of bottle (object
designator)

I . . .

Action:

I Close the fridge

Log:

I . . .

Action:

I Put down bottle

Log:

I . . .

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Goals and Reasoning

I Reasoning about programs is complex.
I We annotate only the interesting parts to infer the semantics

of a plan.
I achieve: Make true if not already true
I perceive: Try to find object and return a information about it
I at-location: Execute code at a specific location

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Annotating Plans

I Achieve goals:

(def-goal (achieve (loc ?obj ?loc))

(achieve ‘(object-in-hand ,?obj :right))

(achieve ‘(object-placed-at ,?obj ,?loc)))

I Perceive:

(def-goal (perceive ?obj-name)

(find-obj ?obj-name))

I At-location:

(at-location (?loc)

(achieve ‘(object-in-hand ,?obj :right)))

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Plan Representation

Achieve(Loc(Obj, Loc))

Perceive(Loc(Obj, Loc))

Achieve(ObjInHand(Obj))

...
...

Achieve(ObjPlacedAt(Obj, Loc))

...
...

...

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Predicates for reasoning on execution traces

(task ?tsk) ?tsk is a task on the interpreta-
tion stack.

(task-goal ?tsk ?goal) Unifies the goal of the task.
(task-start ?tsk ?t) Unifies the start time of the task.
(task-end ?tsk ?t) Unifies the end time of the task.
(subtask ?tsk ?subtsk) Asserts that subtask is a direct

subtask of task.
(subtask+ ?tsk ?subtsk) Assets that subtask is a subtask

of task.
(task-outcome ?tsk ?status) Unifies the final status of a task

(Failed, Done or Evaporated).
(task-result ?tsk ?result) Unifies the result of a task.

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Outline

1. Motivation

2. The Language

3. Reasoning about Plan Execution

4. Outlook

5. Lab session

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

More CRAM Modules

I Designators (symbolic descriptions of objects)

I Process modules

I Reasoning about locations and inference of locations

I On-line reasoning in the execution trace

I Knowrob (tomorrow)

I . . .

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Outline

1. Motivation

2. The Language

3. Reasoning about Plan Execution

4. Outlook

5. Lab session

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Tutorial setup

I Make sure that Emacs is installed

I Make sure that ros-cturtle-roslisp-common and the cram pl stack
is installed.

I All tutorial-related files are in the cram tutorials package:
roscd cram tutorials

I You can run a LISP REPL with:
rosrun cram emacs repl repl

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

The Lisp REPL

I REPL = Read-Eval-Print-Loop

I Interactive development environment

I Inspection of variables

jImportant commandsj
I Ctrl-up and Ctrl-down for moving in history

I Change package with

(in-package :roslisp)

I When in debugger, press number of restart Abort to abort debugging

I Enter in debugger opens stack frames or calls the inspector

I ‘‘l’’ to go back in inspector

I ‘‘q’’ to exit inspector

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Interactive roslisp (Move base)

Roslisp

;; Load actionlib_lisp

CL-USER> (ros-load:load-system "actionlib_lisp" :actionlib)

;; Create ros node

CL-USER> (roslisp:start-ros-node "move_base_lisp_client")

;; Instantiate action client

CL-USER> (defvar *move-base-client*

(actionlib:make-action-client

"/move_base" "move_base_msgs/MoveBaseAction"))

November 4, 2010

CPL Lorenz Mösenlechner



Motivation CPL Reasoning about Plan Execution Outlook Lab session

Interactive roslisp (Move base)

Roslisp

;; Send action goal and wait

CL-USER> (actionlib:call-goal *move-base-client*

(make-msg "move_base_msgs/MoveBaseGoal"

(frame_id header) "base_link"

(x position pose) 1.0

(w orientation pose) 1.0))

November 4, 2010

CPL Lorenz Mösenlechner


	Motivation
	The Language
	Reasoning about Plan Execution

