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Motivation

I Goal: perform complex
activity in a human
household

I Implementing reliable robot
control programs is hard

I Complex failure handling is
required

I Tasks synchronization,
parallel execution, resource
management, ...
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Cognitive Robot Abstract Machine
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The CRAM Core

Goals/
Reasoning
on Plans

Designators
Execution

trace
Process
Modules

Knowrob . . .

CRAM Language

Common Lisp
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High-Level Robot Control

jTask executionj
I Parallel

I Synchronization

I Robust and flexible

I Failure handling

jRequirements for the Languagej
I Expressive

I Easy to use

⇒ CPL is a Domain Specific Language fulfilling these
requirements
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Overview of the CRAM Language

I Implemented in Common Lisp.

I Compiles down to multithreaded programs.

I Programs are in native machine code.

I Provides control structures for parallel and sequential
evaluation of expressions.

I Reactive control programs.

I Exception handling, also across threads.
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Example: Picking up an object

Example

(let* ((obj-pose (find-object obj))

(pre-grasp-pos (calculate-pre-grasp obj-pose))

(grasp-vector (cl-transforms:make-3d-vector 0 0 -0.1))

(lift-vector (cl-transforms:make-3d-vector 0 0 0.1)))

(open-gripper side)

(take-collision-map)

(with-failure-handling

((no-ik-solution (e)

(move-to-different-place)

(retry))

(link-in-collision (e)

(setf pre-grasp-pos (new-pre-grasp))

(retry))

(trajectory-controller-failed (e)

(retry)))

(move-arm-to-point side pre-grasp-pos)))

...)
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Basic Lisp Syntax

I Parenthesis around complete expression:
foo(bar, 123) ⇒ (foo bar 123)

I Prefix notation for operators:
1 + 2 + 3 + 4 + 5 ⇒ (+ 1 2 3 4 5)

I Expressions in “blocks”:

with open("foo.txt", "w") as f:

f.write("bar\n")

⇓
(with-open-file (f "foo.txt" :direction :output)

(format f "bar~%"))
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Overview CRAM Language

I Fluents

I Sequential evaluation

I Parallel evaluation

I Exceptions and failure handling

I Task suspension
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Fluents

I Fluents are objects that contain a value and provide
synchronized access.

I Create with (make-fluent :name ’fl :value 1)

I Wait (block thread) until a fluent becomes true:
(wait-for fl)

I Execute whenever a fluent becomes true:
(whenever fl)

I Can be combined to fluent networks that update their value
when one fluent changes its value.
(wait-for (> x 20))
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Fluent networks

>

>

<

<cup−handle−orientation(ax, ay, az)

angle−distance

position−distance

hand−position(x, y, z)

cup−handle−position(x, y, z)

hand−orientation(ax, ay, az)

angle−tolerance

position−tolerance

min−hand−force

cup−gripped?

left−finger−hand−force

right−finger−hand−force

and
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CRAM Control Flow

jSequential Evaluationj
I Execute expressions sequentially:

(seq

(do a)

(do b)

I Execute expressions sequentially until one succeeds:

(try-in-order

(do a)

(do b)
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CRAM Control Flow

jParallel Evaluationj
I Execute in parallel, succeed when all succeed, fail if one fails:

(par ...)

I Execute in parallel, succeed when one succeeds, fail if one fails:

(pursue ...)

I Try in parallel, succeed when one succeeds, fail if all fail:
(try-all ...)

Examples:

(par
(open-right-gripper)
(open-left-gripper)

November 4, 2010

CPL Lorenz Mösenlechner
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Motivation CPL Reasoning about Plan Execution Outlook Lab session

CRAM Control Flow

jParallel Evaluationj
I Execute in parallel, succeed when all succeed, fail if one fails:

(par ...)

I Execute in parallel, succeed when one succeeds, fail if one fails:

(pursue ...)

I Try in parallel, succeed when one succeeds, fail if all fail:
(try-all ...)

Examples:

(par
(open-right-gripper)
(open-left-gripper)

(pursue
(wait-for (< (distance robot p) 5))
(update-nav-cmd x)

November 4, 2010

CPL Lorenz Mösenlechner
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Failure Handling

I Create exception class:
(define-condition nav-failed (plan-error) ())

I Throw exception: (fail ’nav-failed)
I Handle exceptions:

(with-failure-handling
((obj-not-reachable (e)

(move-to-better-location)
(retry)))

(pursue
(seq
(sleep timeout)
(fail timeout)

(grasp-obj obj)
I Execute expressions even on exceptions (finally):

(unwind-protect
(grasp-object)

(move-arms-to-save-position))
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Tagging, Suspension, Protection forms

I Name sub-expressions and bind them to variables in the
current lexical scope:

(:tag var
(move-to x y)

I Execute expressions with a parallel task suspended:

(pursue
(whenever c

(with-task-suspended nav
...))

(:tag nav
(move-to x y)

I Execute code just before a task is suspended:

(suspend-protect
(move-to x y)

(stop-motors)
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Reasoning based on Execution Traces

I Why did you leave the cup
on the table while clearing
it?

I Where did you stand while
performing a task?

I What did you see?

I How did you move?

I How did you move the arm
while grasping the bottle?

I . . .
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Our approach

1. Record execution trace

I Belief state
I State of plan execution, tasks, activation, deactivation, results

2. Provide an interface to the execution trace through a
first-order representation

I Symbolic annotations of plans
I Causal relations through plan hierarchy
I Symbolic representation of objects in plans
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Recording of Execution Trace

Achieve(Loc(bottle, table))

Achieve(ObjectOpened(fridge))

Achieve(ObjInHand(bottle))

Achieve(ObjectClosed(fridge))

Achieve(ObjPlacedAt(bottle, table))

t

Action:

I Move to fridge

Log:

I Achieve(Loc(bottle,table)) running

I Achieve(Loc(Robot, l)) running

I Trajectory of robot

I . . .

Action:

I Open fridge

Log:

I Achieve(Loc(Robot, l)) succeeded

I Achieve(ObjectOpened(fridge))
running

I Trajectory of arm

I . . .

Action:

I Grasp the bottle

Log:

I Achieve(ObjectOpended(fridge))
succeeded

I Achieve(ObjInHand(bottle)) running

I Perceived properties of bottle (object
designator)

I . . .

Action:

I Close the fridge

Log:

I . . .

Action:

I Put down bottle

Log:

I . . .
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Goals and Reasoning

I Reasoning about programs is complex.
I We annotate only the interesting parts to infer the semantics

of a plan.
I achieve: Make true if not already true
I perceive: Try to find object and return a information about it
I at-location: Execute code at a specific location
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Annotating Plans

I Achieve goals:

(def-goal (achieve (loc ?obj ?loc))

(achieve ‘(object-in-hand ,?obj :right))

(achieve ‘(object-placed-at ,?obj ,?loc)))

I Perceive:

(def-goal (perceive ?obj-name)

(find-obj ?obj-name))

I At-location:

(at-location (?loc)

(achieve ‘(object-in-hand ,?obj :right)))
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Plan Representation

Achieve(Loc(Obj, Loc))

Perceive(Loc(Obj, Loc))

Achieve(ObjInHand(Obj))

...
...

Achieve(ObjPlacedAt(Obj, Loc))

...
...

...
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Predicates for reasoning on execution traces

(task ?tsk) ?tsk is a task on the interpreta-
tion stack.

(task-goal ?tsk ?goal) Unifies the goal of the task.
(task-start ?tsk ?t) Unifies the start time of the task.
(task-end ?tsk ?t) Unifies the end time of the task.
(subtask ?tsk ?subtsk) Asserts that subtask is a direct

subtask of task.
(subtask+ ?tsk ?subtsk) Assets that subtask is a subtask

of task.
(task-outcome ?tsk ?status) Unifies the final status of a task

(Failed, Done or Evaporated).
(task-result ?tsk ?result) Unifies the result of a task.
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More CRAM Modules

I Designators (symbolic descriptions of objects)

I Process modules

I Reasoning about locations and inference of locations

I On-line reasoning in the execution trace

I Knowrob (tomorrow)

I . . .
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Tutorial setup

I Make sure that Emacs is installed

I Make sure that ros-cturtle-roslisp-common and the cram pl stack
is installed.

I All tutorial-related files are in the cram tutorials package:
roscd cram tutorials

I You can run a LISP REPL with:
rosrun cram emacs repl repl
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The Lisp REPL

I REPL = Read-Eval-Print-Loop

I Interactive development environment

I Inspection of variables

jImportant commandsj
I Ctrl-up and Ctrl-down for moving in history

I Change package with

(in-package :roslisp)

I When in debugger, press number of restart Abort to abort debugging

I Enter in debugger opens stack frames or calls the inspector

I ‘‘l’’ to go back in inspector

I ‘‘q’’ to exit inspector
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Interactive roslisp (Move base)

Roslisp

;; Load actionlib_lisp

CL-USER> (ros-load:load-system "actionlib_lisp" :actionlib)

;; Create ros node

CL-USER> (roslisp:start-ros-node "move_base_lisp_client")

;; Instantiate action client

CL-USER> (defvar *move-base-client*

(actionlib:make-action-client

"/move_base" "move_base_msgs/MoveBaseAction"))
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Motivation CPL Reasoning about Plan Execution Outlook Lab session

Interactive roslisp (Move base)

Roslisp

;; Send action goal and wait

CL-USER> (actionlib:call-goal *move-base-client*

(make-msg "move_base_msgs/MoveBaseGoal"

(frame_id header) "base_link"

(x position pose) 1.0

(w orientation pose) 1.0))
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